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Abstract. Lidar is an effective tool to measure snow depth over key watersheds across the United States. Lidar-derived snow

depth observations from airborne platforms have demonstrated centimeter-level accuracy at high spatial resolution. However,

ground-based and airborne lidar surveys are costly and limited in space and time. In recent years, there has been an emerging

interest in using spaceborne lidar to estimate snow depth. Preliminary results from spaceborne lidar altimeters such as the

NASA Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) can provide routine snow depth retrievals over watersheds, though5

further research on accuracy, coverage, and operational potential is needed. In this review, we outline the current status of

research using spaceborne lidar to derive snow depth. We focus on the currently operational ICESat-2 mission, with a summary

of snow observations gathered from previous studies. An example snow depth retrieval using ICESat-2 is also given over the

Alaskan tundra. We also outline best practices for spaceborne lidar snow depth retrieval, based on findings from recent studies.

We conclude with a discussion of ongoing challenges for spaceborne lidar, with suggestions for future studies and requirements10

for future mission concepts.
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1 Introduction

Seasonal snow is a critical factor in Earth’s climatological, ecological, and hydrological processes. Annually, seasonal snow

covers a maximum extent of approximately 36% of the Earth’s Northern Hemisphere (Estilow et al., 2015; Wrzesien et al.,

2019), reflecting a significant portion of the incoming solar radiation and helping to cool the planet. Snow plays an integral15

role in the well-being of many high-latitude wildlife species and ecosystems, including the boreal forest, the largest terrestrial

ecosystem (Boelman et al., 2019; Reinking et al., 2022). Melt water from seasonal snow accounts for approximately one-

sixth of the world’s freshwater supply and supports numerous hydrologic applications including hydropower, agriculture, and

recreation (Barnett et al., 2005; Li et al., 2017). For these reasons, snow is listed as a future research need in a recent report

by the Intergovernmental Panel on Climate Change (IPCC, 2022). Snow water equivalent (SWE) and depth are also identified20

as Essential Climate Variables needed to better understand our changing climate by the Global Climate Observing System

Implementation Plan (GCOS, 2022) and the 2017 Decadal Survey for earth science (NASEM, 2018).

As snow is highly variable over space and time (Sturm et al., 2010), it is especially important to capture SWE heterogeneity

at basin-wide scales to accurately reproduce observed snowmelt, runoff, and streamflow in models (Brauchli et al., 2017;

DeBeer and Pomeroy, 2017; Kiewiet et al., 2022). Frequent, high-resolution, spatially-distributed observations are needed to25

characterize this important component of the water and energy cycle. The observational requirements for SWE and snow depth

stated in the GCOS Implementation Plan and the 2017 Decadal Survey suggest a spatial resolution of 500 m to 1 km, with

higher resolution (100 m) needed in the mountains. Additional requirements include a temporal frequency of 1-5 days and an

accuracy of 10-20%.

Many properties of snow are currently observable globally by satellites, including snow extent and albedo. Spaceborne30

technologies, notably multispectral imagers, have been most successful at mapping snow cover on the global scale. Currently,

methods exist for mapping snow cover with the Landsat collection (Dozier, 1989; Gascoin et al., 2019), Sentinel-2 (Gascoin

et al., 2019), the Moderate Resolution Imaging Spectroradiometer (MODIS; Hall et al., 2002), and the Visible Infrared Imaging

Radiometer Suite (VIIRS; Riggs et al., 2017). Methods also exist for retrieving the albedo and optical grain size of snow using

MODIS and Sentinel-3 (Kokhanovsky et al., 2019; Painter et al., 2009). Retrieval methods for snow depth and SWE are35

documented for sensors such as the Advanced Microwave Scanning Radiometer 2 (AMSR-2; Tedesco and Jeyaratnam, 2019)

and Sentinel-1A (Oveisgharan et al., 2024). While these approaches offer valuable snow information at global and regional

scales, they are challenged by multiple factors, including snow conditions (e.g., dry, wet, deep, or shallow snow), vegetation,

and topography. Because of these challenges, we lack information about snow depth and SWE at the recommended scales

needed to inform climate and water resource applications.40

Recent studies have shown that it is possible to measure snow depth and fill gaps in global snow measurement capabilities

from space using lidar altimetry. This is an appealing alternative to in-situ and airborne lidar methods because of its potential

for global-scale observations. Spaceborne lidar derives snow depth using methods established with airborne lidar, including

differential altimetry, and unique methods (Section 4). Spaceborne lidar altimeters, such as the Ice, Cloud, and Land Elevation

Satellite-2 (ICESat-2; Markus et al., 2017) and the Global Ecosystem Dynamics Investigation (GEDI; Dubayah et al., 2020),45
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provide accurate elevation observations, with centimeter-level accuracy for ICESat-2 over ice sheets and decimeter-level accu-

racy for both GEDI and ICESat-2 over forests (Adam et al., 2020; Brunt et al., 2021). Although current spaceborne platforms

have relatively long revisit times and coarse across-track sampling, satellite altimetry could theoretically be used for routine

measurements of snow depth over key watersheds, such as the Tuolumne River Basin in California, USA or the European Alps.

In this paper, we review the current status of research using spaceborne lidar, and evaluate its potential to derive snow depth50

to meet the research and operational needs to accurately derive SWE. Our review is based on an extensive literature search using

SciSpace, Web of Science, and research previously published by the authors. Based on our literature search, we determined that

existing research on the subject concentrates on the currently operational ICESat-2 mission. We summarize published studies

and present a case study over the tundra of Alaska to demonstrate accuracy and uncertainty estimates for several current

methods. We also document challenges for current measurement approaches, with suggestions for future studies. We focus on55

terrestrial snow in this paper, but we acknowledge that snow depth retrievals have also been attempted over land ice (Enderlin

et al., 2022; Hu et al., 2022b; Lu et al., 2022) and sea ice (Hu et al., 2022b; Kwok et al., 2020; Lu et al., 2022). Snow depth

measurements over ice masses have different challenges that are outside the scope of this review.
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2 Spaceborne Lidar Missions

Spaceborne lidar systems follow similar principles to their airborne and ground-based counterparts. A detailed review of air-60

borne and ground-based lidar is provided by (Deems et al., 2013) for interested readers. For a given instrument, key observation

parameters include the footprint size, along-track resolution, and across-track resolution. A graphic outlining these terms is

shown in Figure 1. The footprint size represents the diameter of individual laser pulses at the surface. The footprint size is typ-

ically small - for instance, ICESat-2 has a footprint size of 11 m. Along-track resolution is determined by the pulse repetition

rate of the instrument, and it defines the spacing between consecutive observations along the satellite track. For example, the65

base-level ICESat-2 product has an along-track resolution of 0.7 m. Across-track resolution describes effective width of a lidar

swath, which can span kilometers for multi-beam systems like ICESat-2 and GEDI. However, these multi-beam configurations

create data gaps between individual beams within the swath.

A full list of known spaceborne lidar platforms and their operational periods may be found in Figure 2. The space-based lidar

instruments listed have two primary measurement modality: waveform-based and photon-counting. Waveform lidar systems70

record the change in amplitude, or signal strength of the return, over time. The shape of the received waveform is sensitive

to terrain characteristics such as surface roughness, which may cause centimeter-to-decimeter levels of bias in the final eleva-

tion measurement (Dong and Chen, 2017). Photon-counting lidar systems offer an alternative by time-tagging and geolocating

received photons relative to a transmitted signal (Luthcke et al., 2021). Received photons are distinguished as signal or noise us-

ing automatic classification algorithms that are based on either histograms of detected photons (Neumann et al., 2019) or more75

complex algorithms using iterative nearest-neighbor filters (Neuenschwander and Pitts, 2019) or photon-density approaches

(Herzfeld et al., 2017). While these systems provide improved along-track spatial resolution compared to waveform-based

platforms, their lower transmitted energy results in greater attenuation through surface with low reflectance, which may limit

measurement coverage.

In the following subsections, we describe the individual spaceborne lidar missions that have been used for snow studies:80

ICESat, GEDI, and ICESat-2. A summary of the technical specifications for each spaceborne lidar is given in Table 1. We

recognize retired and future missions shown in Figure 1 that include spaceborne lidar technology. The Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO) mission included the Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) as part of its scientific payload (Winker et al., 2009). The CALIOP instrument used polarized lidar backscatter to

generate vertical profiles of clouds and aerosols in the atmosphere. Similarly, the Cloud-Aerosol Transport System (CATS) was85

a lidar onboard the International Space Station with similar science objectives to CALIPSO (McGill et al., 2015). However,

both CALIPSO and CATS lacked surface elevation data products, and along-track resolution at the surface was compromised

in favor of fine vertical resolution. Because of these limitations, the only snow application for CALIPSO known by the authors

is the blowing snow product (Palm et al., 2017), and CATS has no known snow applications. Hence, we do not provide further

discussion on CALIPSO or CATS in this paper. The Earth Dynamics Geodetic Explorer (EDGE) and the Surface Topography90

and Vegetation (STV) mission concepts are proposed spaceborne platforms that may include lidar as part of their respective
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Figure 1. Sample lidar swath (orange) to demonstrate along-track resolution, across-track resolution, and footprint size. In this example, the

swath width (across-track resolution) is approximately 120 m, the footprint size is 10 m, and the along-track resolution is 50 m. Note that

these values do not reflect any active or proposed spaceborne lidar mission, and they were arbitrarily selected for visualization purposes.
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Figure 2. A timeline of known spaceborne lidar missions for Earth Observation from 2000-present. Bars are colored by the primary wave-

length(s) for each platform: orange for 1064 nm and green for 532 nm. The "Operational" section includes currently active missions, whereas

the "Retired" section denotes missions that are no longer active. The "Future" section indicates missions that are expected to include lidar.

GEDI was placed in temporary storage aboard the International Space Station from March 2023 to April 2024. The proposed EDGE mission

concept has a notional 2 year duration, but it could be extended as GEDI and ICESat-2 have been.

payloads. If launched, both missions would become operational in the 2030s (Figure 1). More information about these missions

may be found in Section 6.5.

2.1 ICESat

The original ICESat mission was launched in early 2002 with the goal of measuring interannual changes in ice elevation.95

Its sole onboard instrument, the Geoscience Laser Altimeter System (GLAS), primarily operated at 1064 nm, but it also

included a photon-counting-based 532 nm channel to detect clouds and aerosols. The laser fired at a rate of 40 Hz with a 70

m footprint, with each measurement separated by 170 m along-track (Schutz et al., 2005). ICESat was originally conceived

to operate continuously, but an engineering flaw in the three lasers required a change in the operation of GLAS to maximize

laser lifetime (Abshire et al., 2005). ICESat performed a total of 18 33-day campaigns before ceasing operations in late 2009100

(https://nsidc.org/sites/default/files/laseroperationalperiods.pdf).

The main altimetry products from ICESat are the GLAS/ICESat Level-2 products (GLAH12-15). Of these, the Global

Land Surface Altimetry product (GLAH14) is designed for land-based elevation observations, so it is the preferred ICESat

product for calculating the difference in elevation between snow-on and snow-free conditions to infer snow depth (Treichler

and Kääb, 2017). However, there is approximately 70 km cross-track spacing at the mid-latitudes as a consequence of the105

limited observation strategy, so the coverage of ICESat is notably less comprehensive than other platforms over mid-latitude

watersheds (Figure 3a).
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Figure 3. Observed satellite laser altimetry maps of the Tuolumne River Basin, CA (highlighted in orange), with Landsat imagery mosaics

used as a basemap. The blue lines represent the total coverage of each lidar satellite for a single winter (mid-December to mid-March) season:

(a) ICESat in Winter 2008, (b) ICESat-2 in Winter 2022, and (c) GEDI in Winter 2022.
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ICESat GEDI ICESat-2 DS17/GCOS

Sensor Type Waveform Waveform Photon-counting —

Wavelength 1064 nm 1064 nm 532 nm —

Footprint diameter 70 m 25 m 11 m —

Number of ground tracks 1 8 6 —

Repeat time 2-3 times per year 3 days 91 days 3-5 days

Max. Latitude 86◦ 51.6◦ 88◦ 88◦(global)

Along-track resolution 172 m 60 m 0.7 m 100 m

Cross-track spacing — 600 m 3.3 km 100 m
Table 1. Instrument specifications for the spaceborne lidar platforms discussed in detail in this study. The recommendations given by the

2017 Decadal Survey (DS17) and GCOS are included for comparison.

2.2 GEDI

The GEDI mission was designed to measure canopy height and structure from space (Dubayah et al., 2020). GEDI was

launched and added to the International Space Station (ISS) in December 2018 with a planned operational period of 2 years.110

The instrument operated continuously until it was temporarily placed in storage in March 2023 and returned to service in April

2024. GEDI is a full waveform lidar with a 1064 nm wavelength, similar to ICESat. The structure of the received waveform

is used to distinguish between the ground and the canopy, and changes in the waveform amplitude and shape relative to the

transmit pulse are used to derive canopy metrics. The GEDI footprint is 25 m in diameter, with 60 m along-track sampling

from 8 beams that are spaced 600 m apart in the cross-track direction (https://gedi.umd.edu). The GEDI product relevant for115

snow depth is the Level-2A product, which provides along-track ground elevation and canopy height estimates. Coverage and

sampling density is limited by the ISS orbit inclination of 51.6°, though dense spatial coverage is available in the mid-latitudes

(Figure 3c).

2.3 ICESat-2

The ICESat-2 mission was launched in September 2018 to continue measurements of surface height of ice sheets and sea120

ice, as begun by ICESat, as well as vegetation height. Like ICESat, it carries a single instrument, the Advanced Topographic

Laser Altimeter System (ATLAS; Neumann et al., 2019). ATLAS is a photon-counting lidar that assigns a time and location

(latitude and longitude) to each received photon. A single laser is split into 6 beams, with 3 beam pairs spaced by 3.3 km in

the across-track direction and 90 m separation between beams within each pair. Each beam pair includes a strong beam and a

weak beam to obtain sufficient coverage of high reflectivity (weak beam) and low reflectivity (strong beam) targets. The beams125

have an along-track sampling distance of 0.7 m, and each beam has a footprint of 11 m (Magruder et al., 2021), which allows

for significant footprint overlap. The satellite is in a polar orbit with an altitude of 500 km and a 91-day repeat cycle. The

ICESat-2 orbit provides dense coverage near the poles that becomes sparser in the mid-latitudes (Figure 3b), with cross-track
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spacing of 2.5 km and 22 km at 80°N and 40°N, respectively. In the polar regions, data are collected along repeat ground tracks

every 91-day cycle, while systematic and user-requested off-pointing at lower latitudes improve spatial coverage for vegetation130

mapping and for regions of interest. In the past year, the mission has pointed to prior data collections (repeat track pointing) to

enable snow applications.

ICESat-2 currently has 22 data products designed for analysis of ice sheets, vegetation, sea ice, and inland water. Of these

products, three have been used in studies evaluating the potential for seasonal snow depth measurements: the Global Geolocated

Photon Data product (ATL03); the Land Ice Elevation product (ATL06); and the Land, Water, and Vegetation Elevation product135

(ATL08). ATL03 is the base-level ICESat-2 product that is used to produce all higher-level products (Neumann et al., 2019). It

provides the highest in-track sampling at 0.7 m, but also has the least noise filtering applied. ATL06 estimates surface height by

aggregating ATL03 photons into 40 m segments that overlap by 20 m (Smith et al., 2019). A windowed median is used to filter

photons by quality and generate refined aggregations of surface height (Smith et al., 2018). The ATL08 product is designed to

process ATL03 photons and discriminate between ground photons, noise, and several layers of tree canopies (Neuenschwander140

and Pitts, 2019). A median-based filtering algorithm known as the Differential, Regressive, and Gaussian Adaptive Nearest

Neighbor (DRAGANN) method is used to aggregate ground and canopy photons in 100 m segments with no overlap.

A recent development in the ICESat-2 community is SlideRule Earth, an open-source software package and an on-demand

service to efficiently process ICESat-2 data in the cloud (Shean et al., 2023). In addition to facilitating standard ICESat-2

data product subsetting and delivery, SlideRule allows users to generate customizable ICESat-2 products using streamlined,145

parallel implementations of the ATL06 and ATL08 algorithms. Additional user controls allow for ATL03 photon filtering

based on signal confidence and the native ATL03, ATL08, and the Yet Another Photon Classifier (YAPC) photon classification

approaches (Sutterley and Gibbons, 2021). It also includes support for efficient server-side sampling of large cloud-hosted DEM

(e.g., ArcticDEM and REMA, 3DEP) archives, such as ArcticDEM, the Reference Elevation Model of Antarctica (REMA),

and the 3-D Elevation Program (3DEP) (Porter et al., 2023; Stoker and Miller, 2022; Howat et al., 2022), as well as support for150

multiple GEDI products.
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Figure 4. Maps of the study sites listed in Table 2, using a basemap derived from Landsat imagery. The maps zoom in to specific regions

of interest, including the western United States and Alaska (a) and Europe and Asia (b). The relevant study is given for each location. The

SnowEx 2023 field sites in Alaska are also shown, as extensive ICESat-2 tasking was performed for these sites and evaluation is ongoing. Lu

et al. (2022) utilized ICESat-2 granules that spanned hundreds of kilometers, so only the midpoint of these granules is shown here.

3 Deriving Snow Depth from Lidar Products

A list of existing studies using spaceborne lidar for snow applications is given in Table 2, with the locations or regions of

interest shown in Figure 4. The listed studies perform snow depth accuracy assessments for ICESat, GEDI (waveform-based)

and ICESat-2 (photon-counting) data products, with evaluation of land cover classification and terrain characteristics. The155

NASA SnowEx campaigns in 2020, 2021, and 2023 also included targeted ICESat-2 off-pointing to collect data over field sites

in Colorado (2020/2021) and Alaska (2023), with the goal of an assessment of ICESat-2 snow depths in mountainous terrain,

boreal forests, and tundra (Vuyovich et al., 2022). Most of the featured studies derive snow depth using differential altimetry,

though other methods have been proposed by the community for ICESat-2. When discussing the listed studies, bias refers to

the difference, or residual, between spaceborne snow depths and validation depths, whereas uncertainty is a statistical range160

of depth values observed by a spaceborne platform. We also use the terms “accuracy” and “bias” interchangeably. We outline

these approaches and findings from relevant scientific literature in the following subsections.

3.1 Differential Laser Altimetry

The most common method to derive snow depth from lidar is to compare two elevation datasets – one acquired when the surface

was snow-free, and one acquired when the surface was snow-covered. Snow depth is assumed to be the elevation difference165

between the two datasets, with combined measurement uncertainty from both. This approach is known as “differential altime-

try”, and studies have applied this method to airborne/UAV lidar acquisitions (Deems et al., 2013; Painter et al., 2016; Harder

et al., 2020; Jacobs et al., 2021) and terrestrial lidar acquisitions (Currier et al., 2019; Prokop, 2008; Revuelto et al., 2015) to
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Figure 5. A simple example showing how snow depth is calculated using differential altimetry, with ICESat-2 used as an analogue. A snow-

off elevation measurement is first obtained (a), then a snow-on measurement is taken over the same location (b). The snow depth is taken

as the difference between the two height measurements. Imagery is obtained from NASA SnowEx time-lapse cameras in Bonanza Creek

Experimental Forest, Alaska on 14 October, 2022 (a) and 22 December, 2022 (b).

achieve snow depth measurement accuracy of 6-17 cm, depending on the platform and study region. Figure 5 provides a visual

on the measurements needed to obtain snow depth via differential altimetry. The example in Figure 5 is on sloped terrain with170

low-lying vegetation, which may introduce uncertainties to a depth retrieval (Section 5).

The differential method may also be used between spaceborne lidar observations and a reference snow-off DEM. The first

known study to use spaceborne lidar for differential altimetry is Treichler and Kääb (2017), who used ICESat surface heights

(GLAH14) and three reference DEMs to estimate snow depth in the forests of Norway. Preliminary work by Shean et al.

(2021) found that GEDI snow depths had improved mid-latitude spatial coverage compared to ICESat and ICESat-2, but with175

larger biases and less temporal frequency. Subsequent work with spaceborne lidar has focused on ICESat-2. For instance,

Enderlin et al. (2022) used the ICESat-2 ATL06 and ATL08 products alongside airborne lidar and Worldview stereo imagery

to derive snow depth over Wolverine Glacier, AK and Reynolds Creek Experimental Watershed, ID. The Tuolumne River

Basin in California has been assessed by Deschamps-Berger et al. (2023) and Besso et al. (2024) using ATL06 and ATL06-SR

(SlideRule) respectively, with the Airborne Snow Observatory (ASO) used as the primary DEM source. Besso et al. (2024) also180

examined Methow Valley, WA using SlideRule and airborne lidar from the USGS 3DEP program (Stoker and Miller, 2022).

3.2 Other Methods

The differential method is the most common and consistent way to derive snow depth from lidar, but Hu et al. (2022b) devised

a new technique that exploits time delay due to light penetration into the snowpack (see Section 5.4) and ICESat-2 photon

counts to infer snow properties. Hu et al. (2022b) and Lu et al. (2022) deconvolved backscattered ICESat-2 photons that are185

reflected from the snow subsurface to derive path length distributions. These distributions are then used to estimate snow depth,

assuming that (i) terrestrial snow is a Lambertian surface and (ii) there is a sufficiently strong signal return. An uncertainty
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analysis was performed by Lu et al. (2022) for both studies. When compared to a daily 4 km resolution snow depth product,

the authors found snow depths with a reported accuracy of 14 cm, with 23 cm in uncertainty. Hu et al. (2022b) also used

ICESat-2 backscatter to estimate snow albedo and grain size, though the accuracy of these quantities was unclear due to a lack190

of validation data and coarse spatial resolution. Both studies encompassed a wide range of terrain features, including land ice,

sea ice, and mountainous terrain.

It is possible to use repeat tracks of GEDI or ICESat-2 or “crossover” intersections from non-repeating tracks to perform

differential altimetry measurements. Using this approach, Hu et al. (2022a) derived snow depth using intersecting ICESat-

2 tracks over grasslands in Xinjiang, China, with a reported RMSE of 4 cm using ATL08. However, using cross-tracking195

spaceborne lidar paths consistently is difficult in the mid-latitudes due to infrequent repeat coverage, geolocation uncertainty

in repeat tracks, and possible attenuation by clouds.

Based on the existing studies, ICESat-2 has shown the most promising results for spaceborne lidar snow depth measurements

(Table 3), though studies using other platforms are limited. Generally, snow depth derived from ICESat-2 have an RMSE of up

to 33 cm, as determined by the studies in Table 2. ICESat is shown to perform slightly worse, with an RMSE of 47 cm reported200

by Treichler and Kääb (2017). GEDI has the largest bias among the three lidar platforms, with an RMSE of 101 cm over Grand

Mesa, CO (Shean et al., 2021). These platforms are also limited in their revisit frequency (ICESat) or their global coverage

(GEDI). However, it must also be noted that the above assessments occur over different sites, so direct intercomparison is not

possible. Because ICESat-2 has the most potential for snow depth applications, particularly over flat terrain, we will primarily

focus on its measurement performance for the remainder of the paper.205
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Figure 6. (a) Spatial domain of a SnowEx field site on the Alaskan coastal plain used for the retrieval example. The bottom right image

shows the relative location of the site. (b) Snow depth product over the field site (orange box in (a)) as derived from UAF airborne lidar, with

ICESat-2 RGT 1097 (March 4, 2022) given in green.

4 ICESat-2 Case Study in Tundra Environment

Previous sections outlined the basic principles and studies for snow depth retrievals with spaceborne lidar. In this section, we

provide a step-by-step example of the retrieval process over the Alaskan tundra. This section and the associated code sourced

from the ICESat-2 2023 hackweek (https://icesat-2-2023.hackweek.io/tutorials/snow-depth/applications-tutorial-snow-depth.html;

Huppenkothen et al., 2018) enable interested readers to perform simple snow depth calculations with ICESat-2. These methods210

are also applicable to the original ICESat and GEDI, though different sites may require examination due to varying spatial

coverage.

The Alaskan tundra serves as a useful example site for multiple reasons. First, the North Slope of Alaska is at a higher latitude

than previous studies, so there are a greater number of ICESat-2 tracks intersecting the region. Second, the flat terrain minimizes

slope-related errors and issues with DEM co-registration, thereby simplifying the retrieval process. Third, vegetation is limited215

to shrubs and tussocks. While low-lying vegetation and permafrost melt may introduce centimeter-to-decimeter uncertainty to

snow-off assessments (Section 5.3), comparable snow depths should be observed between airborne lidar and ICESat-2 when

the snow-off lidar track is acquired within a year of the snow-on ICESat-2 track.

A snow depth retrieval with ICESat-2 requires snow-on surface elevation data, which is obtainable using either the icepyx

(Scheick et al., 2023) or SlideRule Earth (Shean et al., 2023) Python packages. The former provides access to pre-processed220

ICESat-2 ATL06 and ATL08 that implement user-defined spatial and temporal boundaries, while the latter generates cus-

tomized ICESat-2 data from the ATL03 product. This example uses SlideRule Earth for its customization options, though the

Zenodo code includes a data access routine for icepyx. SlideRule Earth was configured with a 20 m segment length ("len" in
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Figure 7. (a) Co-located ICESat-2 (blue) and UAF lidar (orange) surface elevations over the example site in Northern Alaska. The ICESat-2

data was obtained from March 4, 2022, and the UAF lidar data is from August 31, 2022 to emphasize elevation differences in snow-on and

snow-off conditions. (b) Snow depth estimates from ICESat-2 and UAF lidar over the same track as (a), with the UAF lidar depths originating

from March 12, 2022. ICESat-2 snow depth is estimated as the difference between the two curves in (a).

the code) and a 10 m along-track resolution ("res") within the region shown in Figure 6a. ATL03 photons within each seg-

ment were filtered for high-confidence photons ("cnf") originating from the surface ("atl08_class"). For simplicity, data were225

obtained from a single reference ground track (RGT #1097) that overpassed the region on March 4, 2022. Figure 6b overlays

the queried data on snow depth data from the University of Alaska Fairbanks (UAF, Larsen, 2024).

The UAF lidar data were obtained over the region of interest on March 12, 2022 (snow-on) and August 31, 2022 (snow-off),

respectively. The data are provided in raster format at 0.5 m resolution, so they must be co-located with ICESat-2 for proper

analysis. A simple method to co-locate ICESat-2 and UAF lidar is through a spline interpolant, which approximates surface230

elevation or snow depth such that:

16



hUAF ∝ f(xis2,yis2) (1)

where hUAF is UAF lidar surface elevation and xis2 and yis2 are the spatial coordinates along the ICESat-2 track. Figure

7a shows co-located UAF snow-off data with ICESat-2 snow-on data. Although small, there is a clear positive difference in

the ICESat-2 elevations, which is interpreted as snow depth. If we calculate the difference between the co-located elevation235

products, we obtain ICESat-2 snow depth (dis2):

dis2 =∆h= his2,on −hUAF,off (2)

where his2,on is the snow-on ICESat-2 elevation and hUAF,off is the UAF lidar snow-off elevation (units of meters). Figure

7b compares the calculated ICESat-2 snow depths to co-located UAF lidar depths. Despite the simple co-location scheme,

there is good agreement between the depth sources. The median bias and normalized median absolute deviation (NMAD, see240

Section 6.2) for the ICESat-2 depths are -4 cm and 5.7 cm, respectively, indicating high accuracy and low uncertainty in the

derived depths.

The process shown here is applicable to other watersheds, with ICESat and GEDI elevation data, and with other snow-

off DEMs/DTMs. However, other environments may introduce factors affecting ICESat-2 retrieval accuracy and uncertainty,

requiring users to experiment with different data products or SlideRule Earth configurations. The following sections provide245

greater detail on factors that may impact retrievals, as well as methods that may mitigate uncertainties.
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5 Common Error Sources

The case study in Section 4 demonstrates that accurate snow depth measurements in the tundra are possible to attain via

ICESat-2. The studies in Table 2 also show that GEDI, ICESat, and ICESat-2 can retrieve snow depth over several land classes.

However, snow depth accuracy and uncertainty differ between studies. The lidar platform and the retrieval method appear to250

have an influence, but accuracy and uncertainty also vary even between ICESat-2 studies using differential altimetry. In this

section, we discuss possible sources of uncertainty for space-based lidar snow depth retrievals, including slope and terrain,

vegetation, DEM source, and snowpack penetration. These error sources and the expected biases are summarized in Table 4.

Error Source Impact to Lidar Expected Biases (cm)

Terrain characteristics Complex topography (surface rough-

ness, slope) makes precise geolocation

of the return signal difficult.

> 100 (ATL06/ATL08)

60 (ATL06-SR) for slope > 20°

DEM accuracy and co-registration Reprojecting to match reference DEMs

can cause geolocation uncertainties.

< 10 (lidar DEMs)

> 100 (coarse DEMs)

Vegetation Dense vegetation canopies weaken the

return signal. Undergrowth introduces

uncertainties in snow-free DEMs.

∼ 60 (forest cover ∼ 60%)

∼ 100 (heavy undergrowth)*

Lidar penetration in snow The lidar signal experiences scattering

within a snowpack, increasing the time

it takes to return to the detector.

< 10 (Greenland firn)

Table 4. A summary of the error sources discussed in Section 6. The given biases in the right column represent maximum biases reported

in available literature. Because undergrowth (*) has not been formally assessed for DEM generation, the given value is speculative from the

literature.

5.1 Terrain Characteristics

Mountains have characteristic surface relief and roughness that can introduce horizontal and vertical uncertainty in lidar mea-255

surements (Deems et al., 2013). Complex topography spreads the footprint of a laser pulse non-uniformly, making precise

geolocation of the received signal more difficult. Initial geolocation error is primarily related to instrument pointing errors

that are exacerbated over sloped surfaces. Additional geolocation errors contribute directly to height errors as the tangent of

the surface slope (Section 6.2). Pulse spreading also affects the return time of a received signal, adding uncertainty to surface

elevation estimates. It is therefore critical to identify roughness- and slope-based errors in both snow depth validation sources260

and in snow-free DEMs to quantify accuracy and uncertainty in lidar snow depth retrievals.

18



Several studies have quantified errors from surface roughness and slope in ICESat-2 surface heights and snow depths. Wang

et al. (2019) found that ICESat-2 ATL03 snow-free data had sub-meter accuracy over flat surfaces, relative to an airborne lidar

over Alaska. Similar results were found in ICESat-2 ATL06 and ATL08 depths derived by Hu et al. (2022a), Enderlin et al.

(2022), and Deschamps-Berger et al. (2023), with 4-20 cm in bias in all three studies at slopes < 10°. This error increases265

with surface roughness and slope, with Smith et al. (2019) finding <0.1 m accuracy in ATL06 over smooth surfaces and <1

m accuracy for rough surfaces. Errors in surface elevation also propagate to snow depths, with Enderlin et al. (2022) finding

residuals and MAD values exceeding 1 m over slopes > 20°. The extent of slope-/aspect-based uncertainty is noted by Nuth

and Kääb (2011), with the study noting that elevation residuals exceeded 3 m when using satellite stereo imagery over slopes >

50◦ and forest covers > 40%. Besso et al., (2024) demonstrated that custom ATL06 processing of ATL03 photons (SlideRule)270

could be used to improve ICESat-2 snow depths over mountains and dense forest, with a maximum RMSE of 33 cm and a

standard deviation of 105 cm obtained. Over slopes < 10◦, the authors found a median residual of 5 cm that decreased to 1 cm

at slopes 0-5◦. The median residuals increased to 56-60 cm at slopes > 25◦, which indicates general improvement relative to

previous studies.

5.2 DEM Accuracy and Co-Registration275

The differential altimetry method to derive snow depth requires co-registration with a snow-off DEM or DTM, with different

DEMs used in each of the studies highlighted above. However, DEM sources are frequently in different coordinate reference

systems, and the reprojections needed prior to matching DEMs with lidar may produce geolocation uncertainties. Specifically,

vertical offsets between elevation data sets are related to the magnitude of the horizontal correction and the tangent of the

terrain slope angle, so geolocation offsets are generally larger over steep slopes and rugged terrain. Because the accuracy280

of snow depth measurements depends on the accuracy of both the snow-off and snow-on altimetry, previous studies have

calculated the most accurate spaceborne lidar snow depths using DEMs derived from airborne lidar. Deschamps-Berger et al.

(2023) noted centimeter- to decimeter-scale biases over slopes below 50◦ even in dense forest cover when using an airborne

lidar DEM, while stereographic imagery performed similarly over flat, unvegetated sites but worse over steep slopes and dense

forest.285

The studies in Table 2 adopt a variety of strategies to align DEMs or digital terrain models (DTMs) with ICESat, ICESat-2,

or GEDI. Although DEM/DTM geolocation offsets are generally small across the studies, the varied approaches highlight the

lack of a consistent method to co-register spaceborne lidar with snow-off DEMs/DTMs. The use of a DEM with broad spatial

coverage, such as the 3DEP lidar or the Copernicus DEM, may enable spaceborne lidar snow studies on a regional to global

scale. However, the choice of snow-free DEM/DTMs is also constrained by the need for a sufficiently high spatial resolution290

to resolve usable snow depths from ICESat-2. For example, Deschamps-Berger et al. (2023) found snow depth uncertainties

greater than 3 m when using the Copernicus DEM, compared to 0.6-1.16 m uncertainties when using ASO or Pléiades. Besso

et al. (2024) also found that the quality of the snow-off DEM was paramount, to obtain meaningful snow depth aggregates.
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5.3 Vegetation

Tree canopy has the potential to increase snow depth errors by decreasing the strength of lidar surface returns or absorbing295

returns from snow underneath the canopy. Popescu et al. (2011) compared surface height measurements and canopy metrics

between ICESat and airborne lidar data over the forests of eastern Texas. They found that ground height retrievals generally

agreed between the two platforms, though dense vegetation may spread the returned signal pulse from ICESat and generate a

height return within the tree canopy. Studies conducted by Feng et al. (2023), Neuenschwander et al. (2020), and Neuenschwan-

der and Magruder (2019) assessed the effects of tree canopies on ICESat-2 snow-on (October - April) and snow-off (May -300

September) returns over boreal forests. The three studies found that the ATL08 product generally had terrain biases of -0.17

to +0.59 m over regions of dense vegetation. Interestingly, surface height retrievals had lower uncertainty over snow-covered

surfaces, which was attributed to the high reflectance of signal photons of the optically-bright snow surface. Neuenschwander

et al. (2020) additionally found that ICESat-2 was more likely to detect the surface under low canopy conditions, particu-

larly at canopy cover <10%. We also expect that dense vegetation, such as bog understory within boreal forest environments,305

may be difficult for lidar signals to penetrate, thereby increasing uncertainties. However, more research will be needed over

high-latitude forests to verify this claim.

Vegetative undergrowth, such as shrubs and tussocks, can introduce additional uncertainties in snow depth measurements.

Results by Ilangakoon et al. (2018), Simpson et al. (2017), and Spaete et al. (2011) suggest that undergrowth can cause

meter-level bias in snow-free DEMs, which can in turn produce negative snow depths in differential methods. During snow-on310

conditions, regions of dense undergrowth will have strong snow depth variability at small spatial scales, introducing uncertainty

to lidar retrievals with comparatively large footprints (i.e., ICESat-2). For instance, results from Deschamps-Berger et al. (2023)

suggest that uncertainties in snow-free DEMs remain mostly constant until forest cover densities exceed 60%, with which

large snow depth errors are observed. Besso et al. (2024) found increased uncertainties over Methow Valley, WA relative to the

Tuolumne River Basin, CA, with denser vegetation in the valley thought to be the cause. Shrubland also proves a challenge315

for ground-based snow depth measurements (e.g., probing), introducing uncertainty in the validation of airborne or spaceborne

lidar snow depths.

5.4 Lidar Penetration in Snow

Snow is weakly absorbing and highly reflective at wavelengths in the visible spectrum, resulting in a strong return signal over

snow. However, a laser pulse from ICESat-2 or another 532 nm lidar may also experience scattering within a snowpack. This320

phenomenon, also known as “volumetric scattering”, increases the time it takes for a signal to return to the detector. A modeling

study conducted by Smith et al. (2018) found that volumetric scattering could bias surface elevations from 532 nm lidar by up

to 50 cm when compared to 1064 nm lidar acquisitions. Observed results from Fair et al. (2024) constrain average penetration

depths (i.e., bias) in ICESat-2 data to 4-7 cm at the photon level, given optical grain sizes of 1000 µm or more. However, these

biases were quantified over snow and firn layers over a flat region of the Greenland Ice Sheet, and the authors speculated that325

it may be difficult to distinguish light penetration from other bias sources, such as topography or vegetation. Lu et al. (2022)
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tested their snow penetration algorithm over terrestrial snow and sea ice, and they speculated that it would be effective for

snow depths up to 10 m Snow reflectance at NIR wavelengths is much lower than that of green wavelengths, particularly as

snow ages and melts. As a consequence, volumetric scattering is not a significant issue for NIR lidar (e.g., ICESat, GEDI, most

airborne lidar), though the lower reflectance reduces return signal strength (Deems et al., 2013). The case study in Section 5330

examines snow prior to the melt season, so snow grain size and altimetry bias are assumed to be small.

The penetration depth may also be used to estimate snow depth, with Lu et al. (2022) giving a maximum retrievable depth

of 10 m using backscatter from within the snowpack. This maximum depth was determined using snow from late winter/early

spring over mountainous snow and sea ice. However, more research will be needed to assess the limits of the method, as the

authors generally found depths within 1 m over their study regions.335
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6 Suggestions for Future Studies and Applications to Hydrology

6.1 Uncertainties in Snow Depth Retrievals and SWE Estimates

Previous snow depth studies using ICESat-2 suggest that spaceborne lidar generally works well over flat surfaces in the absence

of vegetation. Sloped terrain remains a significant challenge for snow depth retrievals, so barring improvements in the absolute

geolocation accuracy of spaceborne lidar, development of processing and correction algorithms is essential for spaceborne340

snow depths over mountainous terrain. For instance, the SlideRule project offers ways to address issues related to vegetation

and mountains, including configurable segment length and spatial step size, vegetation canopy treatment, and photon filtering

(Besso et al., 2024). The choice of retrieval method may also affect accuracy. The signal convolution method by Hu et al.

(2022b) and Lu et al. (2022) appears to have the best performance over the Western United States, with an RMSE of 14 cm

and a standard deviation of 9.6 cm, though this is achieved by aggregating ICESat-2 observations to the resolution of a coarse345

reanalysis product (4 km).

Further uncertainties may be generated when converting lidar snow depths to SWE, with snow density having a strong

influence on SWE uncertainty. Bulk snow density is estimated across a domain using snow pit profiles (Kinar and Pomeroy,

2015) or empirical, statistical, or physically-based models (Elder et al., 1998; Sturm et al., 2010; Painter et al., 2016). Snow pits

provide direct measurements of snow density, though observations are subject to observer error, leading to SWE uncertainties350

of 10 cm (Proksch et al., 2016). Simulated snow density varies by model, with Raleigh and Small (2017) finding an uncertainty

range of 0.04-0.1 g cm-3. The authors also found that snow density uncertainties strongly contributed to SWE errors when

observed snow depths greater than 60 cm. Snow depth from these sources could be combined with ground-penetrating radar

(GPR), physically-based and semi-empirical models, or in-situ snow densities to better estimate SWE (McGrath et al., 2022;

Meehan et al., 2023; Webb et al., 2018).355

6.2 Reported Accuracy Metrics

The studies outlined here generally use the mean or median difference to quantify biases in snow depths. However, the metrics

used to quantify bias (accuracy) and uncertainty differ between studies (Table 3). Lu et al. (2022), Treichler and Kääb (2017),

and Besso et al. (2024) also used the root mean square error (RMSE) to estimate snow depth errors relative to validation

measurements. Uncertainty metrics are more varied across studies, including the standard deviation (Lu et al., 2022; Besso360

et al., 2024), interquartile range (Enderlin et al., 2022; Treichler and Kääb, 2017), the median absolute deviation (Enderlin

et al., 2022), and the normalized median absolute deviation (Deschamps-Berger et al., 2023). Each uncertainty metric assesses

snow depth variability differently, so it is difficult to compare results between studies unless random error with a normal

distribution is assumed.

Although the snow depth residuals in Figure 5 have a near-normal distribution, this is uncommon in other ICESat-2 snow365

depth studies, so robust statistical measures are needed. In our case study (Section 4.3), we selected the median residual and

normalized median absolute deviation (NMAD) to assess snow depth accuracy and uncertainty. These metrics can be computed

using the following equations:
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δdi = dis2,i − duaf,i (3)

mδd =median(δd) (4)370

NMAD = 1.4826 ∗median(|δdi −mδd|) (5)

Where δd is the snow depth residual at point i, mδd is the median snow depth residual over all points, dis2 is the ICESat-2

snow depth, and duaf is the validation snow depth (UAF lidar in Section 4.3).

These metrics were used to minimize the influence of outliers in the data, which are otherwise common in fine-scale datasets

such as ICESat-2 and the UAF lidar. The NMAD also has the advantage of being equivalent to the standard deviation if the375

underlying data has a normal distribution, provided a sufficiently large number of observations (Höhle and Höhle, 2009). Due

to the frequency of outliers, we recommend using the median bias and NMAD to quantify along-track spaceborne lidar snow

depth error metrics in future studies. Estimating the percent error compared to total snow depth will also be useful to compare

against 2017 Decadal Survey requirements.

6.3 Feasibility of Spaceborne Lidar to Support Snow Hydrology Science and Applications380

The snow observation requirements, as reported by the 2017 Decadal Survey and the Global Observing System Essential

Climate Variables (GCOS ECVs), advocate for repeat global SWE measurements every 1-5 days with 10-20% accuracy (Table

4). Our literature review and case study demonstrate that ICESat-2 can provide high-resolution snow depths with centimeter-

level accuracy under ideal conditions. Despite the shortcomings discussed in Section 5, progress has been made on improving

snow depth accuracy from spaceborne lidar. Kwon et al. (2021) conducted an observing system simulation experiment (OSSE)385

to determine the assimilated snow depth accuracy needed to improve snow models. It was found that an error threshold of 40

cm was needed to provide beneficial improvements to modeled SWE. This level of accuracy cannot be achieved through the

current methods using ICESat and GEDI (Table 3). However, ICESat-2 is shown to perform within 40 cm of error, given (i)

the local slope is less than 20◦ and (ii) an accurate, high-resolution snow-off DTM is used (Deschamps-Berger et al., 2023).

Besso et al. (2024) also found that filtering ICESat-2 noise photons using SlideRule improved accuracy over complex terrain.390

Spaceborne lidar is currently unable to fulfill the revisit times necessary to achieve global SWE observations every 1-5 days.

Snow evolves throughout the season with accumulation events approximately every 5-7 days, or in strong episodic events

(Pomeroy et al., 1998). Snow melt events occur over a period of days to months depending on the landscape and snow depth

(Liston, 2004; Musselman et al., 2017). Capturing the timing of snow melt is especially critical to inform streamflow forecasting

and water management (Anghileri et al., 2016; Gagliano et al., 2023). Spatial coverage of snow observations is also important395

for capturing the spatial variability of the snowpack. Currently, ICESat-2 direct repeats are every 91 days, though basin-scale
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repeats have shorter revisit times. GEDI has more frequent repeats (~3 days), but only over specific tracks. Kwon et al. (2021)

showed that, with this limited coverage, there was minimal benefit when assimilating spaceborne lidar even with a hypothetical

wide swath platform, though methods to extrapolate information from the lidar swath to a wider domain were not used.

A current limitation in achieving global snow depth observations from spaceborne lidar is the need for an accurate snow-off400

DEM when using the differencing approach, ideally from spaceborne lidar. Deschamps-Berger et al. (2023) showed that less

than 2.5% of the Tuolumne Basin was covered by ICESat-2 during the snow-off season across three years. Additionally, no

currently available global DEM product has demonstrated the ability to achieve accurate snow depths when combined with

spaceborne snow-on lidar observations. Until a global DEM product with sufficient accuracy and resolution is available, the

utility of spaceborne lidar for mid-latitude snow depth observations will be limited to locations with a high-quality snow-off405

DEM available.

An important consideration for future hydrologic applications is data latency. Current spaceborne lidar missions have a data

latency on the order of months (a minimum of 1.5 months for ICESat-2, 4 months for GEDI), which hinders their utility for

operational snow monitoring. To meet data needs for sea ice and vegetation applications, ICESat-2 provides expedited “quick

look” data sets for several of its products. These quick look products are released three days after acquisition and downlink,410

though they do not include the pre-processing used to correct ICESat-2 orbital positioning and pointing. Otherwise, an ideal

spaceborne lidar mission would include a low data latency with pre-processing applied, especially if regular monitoring of a

watershed is desired.

6.4 Combining Spaceborne Lidar Data and Hydrologic Models

Some of the limitations in snow depth retrievals from spaceborne lidar may be overcome with hydrologic models and reanal-415

ysis products, in particular the limited coverage and repeat times. Initiatives such as the Earth System Model-Snow Model

Intercomparison Project (ESM-SnowMIP), the European Center for Medium-Range Weather Forecasts (ECMWF) operational

snow analysis, and the GlobSnow model have performed assessments of snow observations and model outputs over the North-

ern Hemisphere (Drusch et al., 2004; Krinner et al., 2018; Luojus et al., 2021). In addition, previous studies have demonstrated

that assimilation of airborne lidar observations can improve modeled estimates of snow depth, density, and SWE (Hedrick420

et al., 2018; Margulis et al., 2019; Smyth et al., 2019). These studies show that the greatest model improvement comes from

one high-quality map of snow depth near the peak snowpack, suggesting that within a model framework, temporally contin-

uous satellite data may not be necessary. However, lidar platforms with large temporal gaps are unlikely to capture critical

snow evolution periods, such as the time of peak snow. Due to the low spatial coverage of spaceborne lidar overpasses, snow

depth derived from satellite altimetry will likely be most useful for modeling if the limited extents of snow depth observations425

are used to infer snow depth in adjacent pixels to correct models. Multiple approaches for this application exist, including

multidimensional Kalman filters/smoothers (Alonso-González et al., 2023; Magnusson et al., 2014); statistical approaches like

kriging (Collados-Lara et al., 2017); interannual snow depth, snow cover, and SWE persistence patterns (Pflug et al., 2022);

and other machine learning approaches (Cui et al., 2023; Guidicelli et al., 2024; Liu et al., 2024). For any of these methods,

snow depth observations over multiple elevation regimes, aspects, and land cover types would contain more information than430
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Snow variable DS Requirement GCOS Requirement
Does spaceborne lidar

fulfill objective?
Comments

Snow depth —

5 km resolution

1 day revisit time

25 mm uncertainty

Yes

No

Yes

Accuracy is possible

over flat terrain.

Other environments

have decimeter accuracy.

Revisit time is

not achievable.

Snow cover
1-10 km resolution

1-2 times per day

500 m resolution

1-4 times per day

Needs

research

Snow cover metrics

have been proposed,

but not developed.

Optical imagery

is preferred.

SWE

4 km resolution

100 m resolution (mountains)

3-5 day revisit time

10-20% accuracy

5 km resolution

—

1 day revisit time

30% accuracy (mountains)

Yes

Yes

No

Yes

Gives snow depth,

needs density observations

or models to derive SWE.

Resolution is along-track;

across-track is coarser.

Optical properties 30 m resolution N/A
Needs

research

Optical property retrievals

have been proposed

but not developed.
Table 5. A summary of recommended specifications for four snow variables, and the feasibility of spaceborne lidar to fulfill these require-

ments from the 2017 Decadal Survey (DS) and Global Climate Observing System (GCOS). Requirements that have the potential to be

fulfilled, but do not have published literature relevant to spaceborne lidar, are marked as "Needs research". Caveats for each snow variable

are given in the "Comments" column. The GCOS requirements (*) are in the process of being updated, so the values here are subject to

change.
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repeat airborne lidar observations over a single region (Margulis et al., 2019), as they would capture the widest variability

in snow depth, snow density, and snowpack state. Because precipitation biases are responsible for significant errors in snow

models (Henn et al., 2018; Pflug et al., 2021; Smyth et al., 2020; Wayand et al., 2015), accurate lidar observations during

peak SWE and prior to melt onset would be useful to correct over- or under-estimation of snow accumulation. For instance,

Guidicelli et al. (2024) found that assimilation of snow depth from a single ICESat-2 track from the late accumulation season435

improved estimated peak snow amounts. Assimilation of spaceborne lidar snow depths would also be beneficial during the

melting season, where radar-based retrievals are less effective.

Provided a snow-off DEM, an ICESat-2 track can theoretically be used alongside historic SWE data to determine SWE over

a large watershed of length scale 1-10 km. Assuming that SWE values are spatially correlated (i.e. all SWE values are above

or below spatial or temporal averages), the broader watershed domain can be updated with a single ICESat-2 track. Accurately440

transforming ICESat-2 snow depth measurements to usable SWE estimates will require snow density observations, quan-

tification of measurment uncertainty, and correlations between location-specific depth and domain-wide depth. Additionally,

ensemble-based data assimilation frameworks, such as those described above, are ideal to accurately assimilate ICESat-2 depths

into models. Besso et al. (2024) demonstrate that the median snow depth has little bias in the Tuolumne Basin, so even infre-

quent ICESat-2 snow depths could be used to accurately infer SWE throughout the snow season (Margulis et al., 2019). These445

findings were supported by Mazzolini et al. (2024), who performed a data assimilation study to improve reanalysis-derived

SWE measurements using ICESat-2 snow depths. The ICESat-2 community has made data processing tools and workflows

readily available through multiple hackweeks (Arendt et al., 2020), so the modeling community can easily conduct further data

assimilation studies using ICESat-2 data.

Current SWE reconstruction methods use a combination of hydrologic models and reanalyses such as the ECMWF Re-450

analysis v5 (ERA5) and Modern-Era Retrospective analysis for Research and Applications, v2 (MERRA-2), but this approach

can only be used after the water year has occurred. Additionally, hydrologic models are improving constantly, but biases due

to both modeling and forcing errors have significant implications on estimates of snow water resources (Kim et al., 2021;

Mudryk et al., 2023; Raleigh et al., 2015). In many regions with significant snowfall, these modeling errors are chiefly caused

by precipitation biases (Henn et al., 2018; Hughes et al., 2020; Lundquist et al., 2015; Pflug et al., 2021). As a consequence,455

models experience divergence in simulated snow accumulation, in heat content, and in the timing of seasonal snowmelt onset

and snow disappearance. However, previous studies have also shown that there is often repeatability in snow patterns on an

interannual scale (Deems et al., 2008; Pflug et al., 2022, 2021; Pflug and Lundquist, 2020; Schirmer et al., 2011; Schirmer and

Lehning, 2011; Sturm and Wagner, 2010; Premier et al., 2021), so consistent observations near times of peak SWE will ideally

bias correct modeled snow estimates at larger spatial scales.460

6.5 Future Satellite Laser Altimetry Missions

The discussion in this paper focuses on currently operational satellite missions, primarily the ICESat-2 mission. However,

there are future spaceborne lidar altimetry missions that may provide additional opportunities for snow depth retrievals upon

launch. The first such lidar mission is the proposed EDGE mission, which is a NASA Earth System Explorer concept that was
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selected for Phase A study in May 2024. EDGE proposes a swath-mapping lidar with <3m horizontal geolocation accuracy for465

low slopes (https://edge.ucsd.edu/instrument/). EDGE will be a major technological advancement over currently operational

satellite altimetry missions, with 40 beams distributed across five 8-beam mini-swaths that offer dense sampling in both the

along-track and across-track directions. While the EDGE concept has been optimized for terrestrial ecosystem structure and ice

elevation measurements, EDGE will also offer precise seasonal snow depth measurements using the same methods outlined

in earlier sections. EDGE will also offer improved canopy penetration compared to ICESat-2, and will capture the spatial470

variability of snow depth across multiple relevant spatial length scales. If selected for continued development, EDGE is slated

to launch in ~2030.

A second mission concept with a proposed lidar payload is the Surface Topography and Vegetation (STV) mission, which

was conceived as a set of priority targeted observables for incubation study by the 2017 Earth Science Decadal Survey. The

initial STV Study Team report (Donnellan et al., 2021) identified seasonal snow depth as one of 5 priority observables. Can-475

didate measurement strategies include some combination of lidar, radar, and stereo photogrammetry, with candidate architec-

ture including both satellites and airborne platforms. Multiple next-generation satellite lidar concepts, such as the Concurrent

Artificially-intelligent Spectrometry and Adaptive Lidar System (CASALS), are under consideration, with ongoing technology

maturation efforts underway in advance of the upcoming 2027 Decadal Survey. A launch for an STV observable is targeted for

the mid-2030s.480
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7 Conclusions

With recent trends in climate change, it is becoming increasingly important to monitor available freshwater sources. Snow is

a vital freshwater source for billions of people across the globe, so methods to monitor snow water equivalent and snow depth

are needed. In-situ and airborne instruments provide high-quality measurements of snow depth and SWE at select watersheds,

but spaceborne methods will be required to obtain routine observations at larger spatial scales. Spaceborne lidar also has the485

potential to play a role in an overall global snow observing strategy by providing high-resolution snow depth observations, par-

ticularly during the season when other snow remote sensing techniques struggle. Recent developments show that spaceborne

lidar provides useful snow depth data in areas where the local slope is below 20◦ and bare earth DEMs/DTMs are available.

Over regions with consistent winter snow cover, these constraints are consistent with the Arctic tundra or plateaus/valleys in

mountainous regions. Models which can assimilate observations and fill gaps in space and time are critical to utilizing space-490

borne lidar for hydrological applications, though the exact measurement requirements to add value still need to be determined.

There are currently two spaceborne lidar technologies available for snow applications: GEDI and ICESat-2. Of the two plat-

forms, ICESat-2 generally offers better accuracy, greater coverage of high-latitude sites, and more continuous spatial coverage.

However, Besso et al. (2024) demonstrated that customized processing of ICESat-2 products using SlideRule will be important

to minimize uncertainties across variable terrain and land cover types. We recommend using median depth and the normalized495

median absolute deviation (NMAD) when assessing snow depth accuracy and uncertainty to reduce the influence of outliers.

There remain a few science questions that we leave for future studies. First, global snow depth observations from space-

borne lidar will not be possible until an accurate, high-resolution, DEM over regions with seasonal snow is available. To

improve accuracy, a greater understanding of the geolocation accuracy of reference DEMs, and how said accuracy changes

over time, is needed. This limitation highlights the need for an open-access, high-resolution global DEM, as current DEMs500

are limited in total coverage (ArcticDEM) or in spatial resolution (Copernicus DEM). A greater understanding of acceptable

spatial resolution for reference DEMs is also needed to capture spatial variability in snow depth. At a regional scale, snow-free

acquisitions are infrequent, and there is a risk of significant landscape changes occurring between DEM acquisition and space-

borne lidar retrieval, particularly in areas with melting permafrost. Second, more research is needed to validate spaceborne

lidar snow depths against in-situ and airborne methods. Airborne methods such as the ASO campaigns will provide valuable,505

high-resolution snow depths for assessment and monitoring of mid-latitude watersheds. In-situ validation will be especially

important to characterize uncertainties due to vegetation, which may be difficult to quantify with airborne and other space-

based methods. Finally, more research is needed to determine how much of a watershed or basin must be sampled to improve

modeled estimates. Combining spaceborne lidar observations with physical and statistical models may help fill observational

gaps in an overall global snow observing strategy.510
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Code and data availability. The code used for the case study in Section 4 may be found at the following Zenodo link: https://doi.org/10.5281/zenodo.13852000.

Alternatively, it may be found in a more interactive form on the ICESat-2 hackweek Github: https://icesat-2-2023.hackweek.io/tutorials/snow-

depth/applications-tutorial-snow-depth.html. The UAF lidar data (Larsen, 2024) and the ATL06/ATL08 data products (Smith et al., 2019;

Neuenschwander and Pitts, 2019) were obtained from the National Snow and Ice Data Center (NSIDC). Documentation and instructions

on using may be found in (Shean et al., 2023). The camera imagery in Figure 4 was obtained during the SnowEx 2023 campaigns, and is515

currently pending upload to NSIDC.
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