Preprints
https://doi.org/10.5194/egusphere-2024-3678
https://doi.org/10.5194/egusphere-2024-3678
03 Jan 2025
 | 03 Jan 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations

Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang

Abstract. Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) are essential aromatic compounds that significantly affect both climate and human health. However, their sources and formation mechanisms, particularly for NPs, remain poorly understood. This study determined the concentration profiles and the main formation mechanisms of these substance classes in PM2.5 from Dongying, based on field observations and quantum chemical calculations. The daily concentrations of ∑13PAHs during heating were more than twice higher compared to those before the heating period. Benzo(b)fluoranthene was identified as the primary PAHs species. The average concentration of ∑8OPAHs reached 351 ng m-3, with significantly increased concentrations observed during the heating season, and 1-Naphthaldehyde (1-NapA) emerged as the most prevalent OPAH species. Concentrations of ∑9NPs increased approximately 1.2 times during the heating, with 4-methyl-5-nitrocatechol (4M5NC) having the highest concentration. Positive matrix factorization analysis identified biomass burning to be the primary source of these aromatic compounds, particularly for PAHs. Density functional theory calculations further revealed that phenol and nitrobenzene are two main primary precursors for 4-nitrophenol, with phenol showing lower reaction barriers, and P-Cresol was identified as the primary precursor for the formation of 4M5NC. This study provides the first detailed investigation of the sources and formation mechanisms of aromatic compounds in the atmosphere of petrochemical cities in the Yellow River Delta, which may provide fundamental insights and important guidance for reducing emissions of aromatic compounds in similar atmospheric environments.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang

Status: open (until 14 Feb 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang

Viewed

Total article views: 80 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
67 11 2 80 8 0 0
  • HTML: 67
  • PDF: 11
  • XML: 2
  • Total: 80
  • Supplement: 8
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 03 Jan 2025)
Cumulative views and downloads (calculated since 03 Jan 2025)

Viewed (geographical distribution)

Total article views: 80 (including HTML, PDF, and XML) Thereof 80 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 07 Jan 2025
Download
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.