

- 1 Significant contributions of biomass burning to PM_{2.5}-bound aromatic
- 2 compounds: insights from field observations and quantum chemical
- 3 calculations
- 4
- 5 Yanqin Ren¹, Zhenhai Wu¹, Fang Bi¹, Hong Li¹, Haijie Zhang^{1*}, Junling Li¹, Rui Gao¹,
- 6 Fangyun Long¹, Zhengyang Liu¹, Yuanyuan Ji^{1*}, Gehui Wang^{2*}
- 7
- ¹ State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese
 Research Academy of Environmental Sciences, Beijing 100012, China
- ² Key Lab of Geographic Information Science of Ministry of Education of China,
 School of Geographic Sciences, East China Normal University, Shanghai 200142,
- 12 China
- 13
- 14
- 15 *Corresponding authors: Dr. Haijie Zhang /Dr. Yuanyuan Ji/ Prof. Gehui Wang
- 16 E-mail address: <u>zhanghaijie@craes.org.cn</u> / ji.yuanyuan@craes.org.cn
- 17 /ghwang@geo.ecnu.edu.cn
- 18

19 Abstract

20	Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and
21	nitrated phenols (NPs) are essential aromatic compounds that significantly affect both
22	climate and human health. However, their sources and formation mechanisms,
23	particularly for NPs, remain poorly understood. This study determined the
24	concentration profiles and the main formation mechanisms of these substance classes
25	in PM _{2.5} from Dongying, based on field observations and quantum chemical
26	calculations. The daily concentrations of $\sum 13$ PAHs during heating were more than
27	twice higher compared to those before the heating period. $Benzo(b)$ fluoranthene was
28	identified as the primary PAHs species. The average concentration of Σ 80PAHs
29	reached 351 ng m ⁻³ , with significantly increased concentrations observed during the
30	heating season, and 1-Naphthaldehyde (1-NapA) emerged as the most prevalent OPAH
31	species. Concentrations of ∑9NPs increased approximately 1.2 times during the heating,
32	with 4-methyl-5-nitrocatechol (4M5NC) having the highest concentration. Positive
33	matrix factorization analysis identified biomass burning to be the primary source of
34	these aromatic compounds, particularly for PAHs. Density functional theory
35	calculations further revealed that phenol and nitrobenzene are two main primary
36	precursors for 4-nitrophenol, with phenol showing lower reaction barriers, and P-Cresol
37	was identified as the primary precursor for the formation of 4M5NC. This study
38	provides the first detailed investigation of the sources and formation mechanisms of
39	aromatic compounds in the atmosphere of petrochemical cities in the Yellow River
40	Delta, which may provide fundamental insights and important guidance for reducing

- 41 emissions of aromatic compounds in similar atmospheric environments.
- 42
- 43 Keywords: Aromatic compounds, Source identification, DFT calculations, Formation
- 44 mechanism, Heating period
- 45 **1. Introduction**

Aromatic compounds, characterized by the presence benzene ring, are known for their structural stability and resistance to decomposition, as well as their distinctive aromatic properties. Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) are significant aromatic compounds commonly found in atmospheric particulate matter. These compounds exerted a considerable influence on ambient air quality, climate change, and human health (Peng et al., 2023; Yhab et al., 2021; Chong et al., 2021; Lammel et al., 2020; Elzein et al., 2019).

53 PAHs are semi-volatile compounds, comprised of multiple interconnected aromatic rings and are commonly found throughout various environmental settings. 54 PAHs are primarily formed as byproducts of the partial combustion of carbon-rich 55 substances, including coal, biomass, tobacco, garbage, charbroiled meat, and petroleum 56 57 (Del Rosario Sienra et al., 2005; Kashiwakura and Sakamoto, 2010; Chen et al., 2005; Shen et al., 2010). OPAHs are aromatic compounds with one or more carbonyl groups 58 connected to their ring structure, and they contain various quinones and ketones. 59 OPAHs generally have lower vapor pressures upon comparison with their parent PAHs, 60 leading to a higher propensity to be retained in the particulate phase. The direct-acting 61

62	mutagen properties and the generation of reactive O2 species render some OPAHs more
63	hazardous compared with the parent PAHs (Bandowe et al., 2010; Chung et al., 2006;
64	Bolton et al., 2000; Pedersen et al., 2005). OPAHs is carried out either directly through
65	the incomplete combustion of various organic materials (Oda et al., 2001; Jakober et
66	al., 2007) or can be formed indirectly through photochemical reactions involving PAHs
67	and ozone, nitro, and hydroxyl radicals (Bandowe et al., 2014; Wang et al., 2011; Lin
68	et al., 2015b). Research suggests that the PAH concentrations, along with their
69	derivatives in $PM_{2.5}$, increased during winter or heating periods, primarily due to
70	biomass and coal burning (Lin et al., 2015b). Furthermore, particulate matter released
71	from biomass burning is considered more toxic compared to that derived from other
72	sources (Sarigiannis et al., 2015). NPs are monocyclic aromatic compounds having
73	properties similar to benzene, including low solubility in water while high solubility in
74	various organic solvents such as ethanol, pyridine, xylene, and chloroform. In addition
75	to adversely affecting human health, NPs can also disrupt the equilibrium of the
76	ecosystem, increase the risk of cancer, and disrupt plant growth (Chow et al., 2015;
77	Liang et al., 2020; Booth et al., 2014). NPs in the atmosphere are primarily derived
78	from primary emissions and secondary formation. Primary sources of NPs include
79	emissions from coal combustion, vehicle exhaust, biomass combustion, and industrial
80	and agricultural sources, similar to the sources of PAHs and OPAHs (Liang et al., 2020;
81	Wang et al., 2017; Lu et al., 2021). Observations in the atmospheric environment
82	indicate that secondary formation can provide more than one-third of the total NPs
83	present (Yuan et al., 2016a). Benzene, toluene, and their derivatives are considered

84	significant precursors in the secondary formation of NPs, although secondary NPs can
85	also be generated through nitrification of phenols in the gas or condensation phase or
86	by interactions between phenoxyl radicals, formed from NO ₂ , and other aromatic
87	compounds (Harrison et al., 2005).

88 In Dongying City, known for its petrochemical industry, benzene, toluene, and xylene are significant contributors to the levels of VOCs into the environment (Chen et 89 al., 2020). Moreover, research has revealed that in the presence of NO_x, aromatic 90 hydrocarbons can be oxidized to yield nitroaromatic compounds, including nitrophenol, 91 92 dinitrophenol, nitrocatechol, and methylnitrocatechol (Lin et al., 2015a). The primary 93 sources of aromatic compounds in particulate matter within high-aromatic environments and the potential relationship between their secondary formation and the 94 benzene series mentioned earlier still require systematic investigation. Therefore, this 95 study explored the pollution characteristics and primary sources of PAHs, OPAHs, and 96 NPs in PM_{2.5} in Dongying City, and further explored the formation mechanism of 97 typical nitrophenols based on field observations and density functional theory 98 99 calculations. This study represents the first investigation regarding the sources and the forming mechanisms of aromatic compounds within the atmosphere of petrochemical 100 cities in the Yellow River Delta. 101

102 2 Materials and Methods

103 2.1 Field observations

104 PM_{2.5} samples collection was carried out at Dongying Atmospheric Super Station

105	(118.59°E, 37.45°N) from October 27 to December 6, 2021. The surrounding area is
106	primarily residential and commercial, with well-developed transportation infrastructure
107	and no significant sources of industrial pollution, making it a representative urban
108	monitoring site. A high-flow particulate sampler (TH-1000H, Wuhan Tianhong
109	Instrument Co., LTD) was employed to obtain the samples. This instrument had a
110	sampling flow rate equal to 1.05 m ³ /min and a flow accuracy of $\pm 2.5\%$. It comprised a
111	quartz filter (Quartz, 203 mm×254 mm, Whatman, UK), with an effective filter
112	diameter of 180 mm×230 mm. Samples were collected twice daily: once during the day
113	from 8:00 am to 7:30 pm local time (LT) and once from 8:00 pm to 7:30 am LT.
114	Meteorological statistics, including temperature, weather conditions, humidity, wind
115	direction and speed, were measured concurrently with each sampling.

116 **2.2 Chemical analysis**

Organic species in PM_{2.5} were detected following a pre-treatment process that 117 included ultrasonic extraction along with derivatization. Initially, a quarter of the 118 membrane was placed into a sample bottle and then immersed in a mixture of 119 120 dichloromethane and methanol solution (2:1, v/v) to completely submerge the filters. After that, three 15-min treatments of ultrasonic extraction were carried out. Following 121 the process of extraction, filtration was carried out through glass wool using a Babbitt 122 dropper into pear-shaped flasks. The filtrates were then concentrated to a small amount 123 through a rotary evaporator inside a vacuum. Subsequently, they were transferred to 124 GC bottles, which were dried with a nitrogen purifier, followed by the addition of 60 125 µL of N, O-bis-(trimethylsilyl) trifluoroacetamide solution. The bottles were then 126

placed in an oven at 70 °C for a total time duration of 3 h to complete the derivatization process. After the reaction, the solution was cooled and an internal standard comprised of 40 μ L tridecane was added. The solution was mixed completely and then placed in the refrigerator for examination.

131 This study analyzed thirteen different PAHs, eight different OPAHs, and nine different NPs using the afore mentioned methods of analysis, as well as some organic 132 133 tracers, e.g. levoglucosan. The thirteen kinds of PAHs include Fluoranthene (Flu), 134 Benzo[k]fluoranthene (BkF), Benzo[a]anthracene (BaA), Pyrene (Pyr), 135 Chrysene/triphenylene(CT), Benzo[b]fluoranthene (BbF), Benzo[a]pyrene (BaP), Benzo[e]pyrene (BeP), Indeno[1,2,3-cd] (IP), Perylene (Per), Benzo[ghi]perylene 136 (BghiP), Dibenzo[a,h]anthracene (DBA), and Coronene. The eight OPAHs include 137 benzanthrone (BZA), 9-fluorenone (9-FO), 1-Naphthaldehyde (1-NapA), 1,4-138 139 chrysenequione (1,4-CQ), anthraquinone (ATQ), 5,12-naphthacenequione (5,12-NAQ), benzo(a)anthracene-7,12-dione (7,12-BaAQ), 6H-benzo(cd)pyrene-6-one and 140 (BPYRone). The nine NPs are 4-nitrophenol (4NP), 4-nitroguaiacol (4NGA), 3-methyl-141 142 4-nitrophenol (3M4NC), 4-methyl-5-nitrocatechol (4M5NC), 4-nitrocatechol (4NC), 5-nitroguaiacol (5NGA), 2, 4-dinitrophenol (2, 4-DNP), 5-nitro-salicylic acid (5NSA) 143 and 3-nitro-salicylic acid (3NSA). 144

Inorganic ions soluble in water were quantified through an ion chromatograph
(Dionex-1100). The analysis focused on eight water-soluble inorganic ions: NO₃⁻, Cl⁻,
NH₄⁺, SO₄²⁻, Na⁺, Mg²⁺, K⁺, and Ca²⁺. The measurement of organic carbon (OC) and
elemental carbon (EC) was performed through a thermal/optical carbon analyzer

- 149 (DRI2015). Detailed tests for analyzing EC, OC, and inorganic ions are provided in a
- 150 previous report (Ren et al., 2021).
- 151 2.3 Quantum chemical calculations

152 Quantum chemical calculations both in the gas phase and liquid phase were 153 performed using the Gaussian 09 software. The geometries and frequencies for the reactant monomers, reactant complexes (RC), transition states (TS), intermediate (IM) 154 155 and product complexes (PC) were performed at the M06-2X/6-311++G(2df,2p) level 156 of theotry, which is well-established for studies of organic systems (Li and Wang, 157 2014; Zhao and Truhlar, 2007). The conductor-like polarizable continuum model(CPCM) was used for the optimization calculations to include the solvent effect 158 in the liquid (Takano and Houk, 2005). Radicals were treated using unrestricted 159 Hartree-Fock calculations, and TS was optimized to ensure the presence of a single 160 161 imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were carried out to further guarantee that the TS connects the right pre- and post-complexes along the 162 reaction coordinate (Gonzalez and Schlegel, 1989). 163

164 **2.4 Quality control and quality assurance (QC&QA)**

QA and QC procedures for sampling and laboratory analysis strictly follow the environmental monitoring technical specifications and analytical standards established by the Ministry of Environmental Protection. Periodic inspections of all analytical and testing instruments were carried out in accordance with the relevant metrological verification protocols. The quartz filter membrane was burned inside a Muffle furnace at a temperature of 450 °C for 6 h before sampling. After natural cooling, it was

171 removed and transferred to a controlled temperature and humidity box $(25 \pm 1 \text{ °C}, 50 \pm 5\% \text{ RH})$. The sampled filter membrane was packed in a ziplock bag and stored in the 173 refrigerator at a temperature below 0 °C until analysis. To minimize systematic errors, 174 corresponding blank filter samples were simultaneously prepared and stored followed 175 by analysis under the same conditions as the collected samples.

176 **3 Results and discussion**

177 3.1 Changes in meteorological conditions, gaseous pollution, and major 178 components of PM_{2.5}

179 The entire study period was divided into two stages: before heating (October 27 to November 14, 2021) and during heating (November 15 to December 6, 2021). Fig. 1 180 181 and Table 1 illustrate the temporal variations within the meteorological factors, concentrations of gaseous pollutants, as well as the primary components of PM2.5. 182 183 Before heating, the relative humidity (RH) and temperature (T) were higher, averaging $64 \pm 18\%$ and 12 ± 5.4 °C, respectively. During the heating period, the average values 184 were found to be lower at $60 \pm 18\%$ and 7.9 ± 3.7 °C. Overall, the average values for 185 the entire study period were determined to be 62 \pm 18% and 9.6 \pm 4.9 °C. The 186 concentrations of SO₂ and NO during heating (11 \pm 6.6 ppb, and 17 \pm 16 ppb, 187 respectively) were nearly twice that of the value observed before heating, with a slight 188 increase in the level of NO2. These increases are likely attributable to the increased 189 190 burning activities during the heating season, particularly residential coal combustion. In contrast, the levels of O3 and OX (the sum of NO2 and O3) were significantly higher 191

192	before heating, with an average value of 49 ± 27 ppb and 80 ± 28 ppb, respectively, in
193	comparison to that observed during the heating period. This variation was primarily
194	ascribed to the higher temperatures and stronger solar radiation before heating.
195	Although the PM _{2.5} concentrations remained unchanged throughout the sampling
196	period, there were considerable variations in the concentrations and proportions of its
197	chemical components. Figs.1 and 2 showed the time variations and absolute proportion
198	of chemical components in PM _{2.5} before and during heating, respectively, throughout
199	the entire sampling period. Throughout the observation period, secondary inorganic
200	aerosols (SIA) such as SO_4^{2-} , NO_3^{-} , and NH_4^+ were determined as the main chemical
201	component of $PM_{2.5}$, followed by OM (1.6 times the OC). Before heating, the
202	concentrations of SO42-, NO3-, and NH4+ were found to be 5.5, 17, and 7.5 μg m^-3,
203	respectively, while during heating, they demonstrated the average values of 5.3, 17, and
204	7.7 $\mu g\ m^{\text{-3}}$ (Fig. 1b, c). The total concentrations and proportions of SIA remained
205	relatively stable, with an average of about 35% during the whole process. Among these,
206	NO_{3^-} was determined as the predominant species, constituting approximately 19% of
207	the total $\text{PM}_{2.5}$ during the sampling period. OM comprised 12.7% of $\text{PM}_{2.5}$ before the
208	heating period and increased significantly to 17.5% during heating (Fig. 2b, c).
209	Correspondingly, the average OC concentration increased from 5.4 to 7.7 $\mu g\ m^{\text{-3}}.$
210	However, the average ratio of OC/EC remained relatively unchanged, with values of
211	2.5 ± 1.1 before heating and 2.4 ± 0.6 during heating. Generally, OC is generated from
212	both primary emissions and secondary formation, while EC is predominantly derived
213	from primary sources. The significant increase in the concentration of OC alongside a

214	stable OC/EC ratio suggests that the sources of carbonaceous aerosols in this study
215	include both primary emissions and secondary formation processes. Furthermore, a
216	high positive correlation between levoglucosan and $K^{\scriptscriptstyle +}$ and $Cl^{\scriptscriptstyle -}$ (Fig. 3), along with the
217	enhanced mass concentrations of these ions during the heating period, suggests
218	additional combustion activities, including biomass burning, in addition to coal
219	combustion.

Table 1. Meteorological parameter values and concentrations of gaseous pollution and chemicalcomponents of PM2.5 during the sampling periods in Dongying.

Daniad	The whole sampling	Before heating period	During heating
Period			period
Date	27/10-6/12	27/10-14/11	15/11-6/12
Scope of the Sample	<i>N</i> =74	N=30	<i>N</i> =44
Meteorological parar	neters		
Temperature, °C	$9.6 \pm 4.9 ((-1.7) - 21)$	12 ± 5.4 ((-1.7) – 21)	$7.9 \pm 3.7 \ (0.2 - 17)$
Relative humidity, %	$62 \pm 18 \ (29 - 94)$	64 ± 18 (33 – 95)	$60 \pm 18 (30 - 94)$
Gaseous pollutants, p	opb		
SO_2	$8.9\pm 5.9\ (2.7-28)$	$6.7 \pm 4.2 \ (3.1 - 20)$	$11 \pm 6.6 \ (2.7 - 28)$
NO	$13\pm14~(NA-54)$	$8.5\pm 11\;(0.2-41)$	$17 \pm 16 \; (1.0 - 54)$
NO_2	$35 \pm 17 \ (6.8 - 78)$	$32 \pm 18 \ (6.8 - 78)$	$38 \pm 16 \ (9.2 - 73)$
O ₃	$39\pm23\;(3.8-106)$	$49\pm 27\;(3.8-106)$	$30 \pm 16 \; (8.9 - 83)$
Ox	$74 \pm 25 \; (43 - 167)$	$80 \pm 28 \ (51 - 167)$	$68 \pm 20 (43 - 137)$
Major components of	f PM _{2.5} , μg m ⁻³		
PM _{2.5}	$74 \pm 42 (23 - 222)$	74 ± 41 (23 – 167)	75 ± 43 (25 – 222)
OC	$6.8\pm 3.5\;(0.6-15)$	$5.4\pm2.7\ (0.6-10)$	$7.7\pm 3.8\ (1.4-15)$
EC	$3.7 \pm 3.8 \; (0.2 - 26)$	$3.5\pm 4.7\ (0.2-26)$	$3.8\pm 3.2\ (0.6-20)$
OC/EC	$2.4\pm 0.8\;(0.1-5.1)$	$2.5 \pm 1.1 \; (0.1 - 5.1)$	$2.4\pm 0.6\;(0.2-3.6)$
SO4 ²⁻	$5.4 \pm 3.5 \; (1.2 - 17)$	$5.5\pm 3.6(1.2-15)$	$5.3 \pm 3.4 \ (1.5 - 17)$
NO ₃ -	$17 \pm 15 \; (1.5 - 67)$	$17 \pm 15 \; (1.5 - 46)$	$17 \pm 16 \ (1.6 - 67)$
\mathbf{NH}_{4^+}	$7.6\pm 6.1\ (0.6-27)$	$7.5\pm 6.1\ (0.9-21)$	$7.7\pm 6.2\ (0.6-27)$
Cl	$1.8 \pm 1.2 \ (0.2 - 6.1)$	$1.5\pm 1.3\ (0.2-6.1)$	$2.0 \pm 1.1 \; (0.5 - 5.3)$
\mathbf{K}^+	$0.6\pm 0.4\;(0.1-2.0)$	$0.5\pm 0.4\;(0.1-2.0)$	$0.6 \pm 0.3 \; (0.1 - 1.2)$

223

224

and its main compounds, in the winter and autumn of Dongying.

225

226

Fig.2 Absolute proportion of chemical components in PM2.5 across the whole sampling 227 228

230 Fig.3 Regression analysis showing the linear relationship between levoglucosan and Cl⁻ (a) and K⁺ (b) before (green) and during (red) heating throughout the sampling 231 period. 232

233 **3.2** Changes in the concentration and composition of aromatic compounds

234 3.2.1 PAHs and OPAHs

235 Table 2 and Fig. 4b show that the daily concentrations of 13 different PAHs (Σ 13PAHs) ranged from 3.9 to 388 ng·m⁻³, with 91 ng·m⁻³ of overall average value 236 237 throughout the sampling period. During the heating phase, concentrations averaged 115 238 $ng \cdot m^{-3}$ (over a range of 15 to 388 $ng \cdot m^{-3}$), more than twice the levels recorded before heating, which averaged 56 ng m⁻³ (over a range of 3.9 to 241 ng m⁻³). The Σ 13 PAHs 239 measured in the current research were lower in comparison to those recorded in other 240 Chinese cities, including Xi 'an (127 ng·m⁻³, 2016–2017) (Wang et al., 2019a) and 241 Harbin (215 ng·m⁻³, 2017–2018) (Ma et al., 2020). Nighttime average concentrations 242 of PAHs (65 \pm 77 ng·m⁻³ before heating and 154 \pm 120 ng·m⁻³ during heating) were 243 244 observed to be 1.5 to 2 times higher upon comparison with those measured during the daytime (44 \pm 39 ng·m⁻³ before heating and 77 \pm 49 ng·m⁻³ during heating) (Fig. 5a). 245 The observed day-night pattern aligns with the observations obtained from coastal cities 246 in Bohai and the Yellow Seas, as well as Jinan in Shandong Province (Chen et al., 2021; 247 Zhang et al., 2018). The concentration level of BbF in PAHs was found to be highest, 248 accounting 16% of total PAHs (Fig. 4b), This dominance of BbF was found to be 249 consistent with the previous research (Li et al., 2013; Ren et al., 2017; Bai et al., 2023; 250 251 Li et al., 2022).

The average total concentration of OPAHs (\sum 80PAHs) was determined to be 351 ng·m⁻³ across all the sampling periods, which was substantially higher during the heating period (average 378 ng·m⁻³, range 114–812 ng·m⁻³) compared to the period of

255	before heating (average 311 ng·m ⁻³ , range 70–875 ng·m ⁻³) (Table 2). The concentration
256	of \sum 80PAHs was higher at night upon comparison with daytime, being approximately
257	1.1 to 1.2 times greater both before and during the heating period (Fig. 4c and 5b).
258	Among the eight OPAHs, 1-NapA was determined as the most prevalent, accounting
259	for 187 ng m ⁻³ (59% of \sum 80PAHs) before heating and 156 ng m ⁻³ (41% of \sum 80PAHs)
260	during heating (Fig. 4c and 5e). The average \sum 80PAHs concentrations in this study
261	were significantly higher compared with those found for other Chinese urban areas,
262	such as Guangzhou and Xi'an, with respective values of 23 and 54 ng m ⁻³ (Ren et al.,
263	2017). Furthermore, the \sum 80PAHs levels observed in this study exceeded those
264	reported at various foreign sites, such as the south (traffic site, 41.8 ng m ⁻³) (Alves et
265	al., 2017) and central European cities (about 10 ng m ⁻³) (Lammel et al., 2020),
266	Thessaloniki, Greece (0.86–4.3 ng m ⁻³) (Kitanovski et al., 2020), and Mainz, Germany
267	$(0.047-1.6 \text{ ng m}^{-3}).$

268 3.2.2 NPs

Based on the data presented in Table 2, the total concentrations of NPs compounds (Σ 9NPs) demonstrated a mean value equal to 72 ng m⁻³ across the sampling period. During the heating phase, Σ 9NPs averaged 76 ng m⁻³ (covering a range extending from 23 to 175 ng m⁻³), which was approximately 1.2 times higher compared to the concentrations determined before heating, with an average of 65 ng m⁻³ (covering a range of 4.2 to 149 ng m⁻³). These concentrations were approximately twice those observed during autumn and winter (38 ng m⁻³) in earlier work conducted in Beijing

276	(Ren et al., 2024). They were also considerably higher in comparison to the values
277	recorded in the summer (8.5 ng m ⁻³) and spring (8.6 ng m ⁻³) (Ren et al., 2022). In
278	contrast to OPAHs and PAHs, the total concentrations of ∑9NPs did not demonstrate
279	significant diurnal variation. However, during the heating period, a significant
280	nighttime increase was observed, with approximately 1.4 times higher concentrations
281	at night upon comparison with the levels of daytime (Fig. 4d and Fig. 5c). However,
282	the relative nine NPs molecular composition in PM2.5 remained consistent throughout
283	the observation period. Among all the species, 4M5NC demonstrated the highest
284	concentration, contributing to 73% of the total NPs before heating and 53% during
285	heating, followed by 4NP, comprising 20% before heating and increased to 34% during
286	heating (Fig.4d and Fig. 5f). The total concentration of ∑9NPs observed in the current
287	research was generally comparable to previous measurements carried out in Beijing
288	during winter $(74 \pm 51 \text{ ng m}^{-3})$ (Li et al., 2020). Conversely, the levels were substantially
289	higher compared to those recorded in Jinan ($48 \pm 26 \text{ ng m}^{-3}$) (Wang et al., 2018), Hong
290	Kong, and Xi'an, with respective values of 12 ± 14 and 17 ± 12 ng m ⁻³ (Wu et al., 2020;
291	Chow et al., 2015). Compared to the international research, the observed Σ 9NPs
292	concentrations were generally higher, such as those reported in Germany (16 ng m ⁻³),
293	the UK (19 ng m ⁻³), and Belgium (32 ng m ⁻³ in winter, 13 ng m ⁻³ in autumn) (Teich et
294	al., 2017; Mohr et al., 2013; Kahnt et al., 2013).

Table 2. Organic compounds in PM_{2.5} during the sampling periods in Dongying.

Period	The whole sampling	Before heating period	During heating period
Date	27/10-6/12	27/10-14/11	15/11-6/12
Scope of the Sample	<i>N</i> =74	<i>N</i> =30	N=44
PAHs			

Fluoranthene (Flu)	$8.9\pm 8.1\;(0.8-33)$	$5.0\pm 4.3\;(0.8-15)$	$12 \pm 9.0 \ (1.7 - 33)$
Pyrene (Pyr)	$8.5\pm 8.4\;(0.7-36)$	$4.7\pm 4.3\ (0.7-16)$	$11 \pm 9.5 \ (1.4 - 36)$
benz(<i>a</i>)anthracene (BaA)	$6.8 \pm 9.3 \; (0.1 - 47)$	$3.5\pm 4.5\;(0.1-20)$	$9.0 \pm 11 \; (0.7 - 47)$
chrysene/triphenylene (CT)	11 ± 12 (0.7 – 54)	$6.4\pm 6.7\;(0.7-26)$	$15 \pm 13 \; (1.9 - 54)$
benzo(<i>b</i>)fluoranthene (BbF)	$15 \pm 15 \ (0.5 - 64)$	$9.2 \pm 10 \ (0.5 - 39)$	19 ± 16 (3.0 – 64)
benzo(k)fluoranthene (BkF)	$4.4 \pm 4.0 \ (0.2 - 17)$	$2.9 \pm 2.8 (0.2 - 11)$	$5.4 \pm 4.4 \ (0.8 - 17)$
benzo(<i>e</i>)pyrene (BeP)	$9.0 \pm 8.5 (0.4 - 37)$	$5.5 \pm 6.1 (0.4 - 24)$	$11 \pm 9.1 (1.8 - 37)$
benzo(<i>a</i>)pyrene (BaP)	$7.5 \pm 8.7 (0.1 - 38)$	$4.5 \pm 6.0 (0.1 - 25)$	$9.5 \pm 9.7 (0.9 - 38)$
Pervlene (Per)	$1.6 \pm 2.1 \ (0.01 - 10)$	$0.9 \pm 1.4 \ (0.01 - 57)$	$2.0 \pm 2.4 (0.2 - 9.6)$
indeno(1,2,3- <i>cd</i>)pyrene (IP)	$7.6 \pm 7.2 \ (0.1 - 26)$	$5.5 \pm 6.7 (0.01 - 24)$	$8.8 \pm 7.3 (0.8 - 26)$
benzo(<i>ghi</i>)perylene (BghiP)	$6.8 \pm 6.4 (0.1 - 23)$	$5.0 \pm 6.1 (0.02 - 23)$	$7.9 \pm 6.4 (0.9 - 23)$
dibenz(a,h)anthracene (DBA)	1.9 + 2.4 (0.01 - 15)	1.7 + 2.1 (0.01 - 7.8)	2.0 + 2.5 (0.1 - 15)
coronene	$25 \pm 26(0.05 - 11)$	$2.9 \pm 3.6 (0.05 - 11)$	2.6 = 2.6 (0.1 - 10) 2.4 + 2.2 (0.1 - 9.0)
Σ13PAHs	$91 \pm 90(3.9 - 388)$	$56 \pm 62 (39 - 241)$	$115 \pm 98 (15 - 388)$
OPAHs	<u>, , , , , , , , , , , , , , , , , , , </u>	00 - 02 (00 - 211)	110 _ 70 (10 - 500)
1-naphthaldehvde (1-NanA)	$168 \pm 106(57 - 796)$	187 + 149 (57 - 796)	$156 \pm 62(75 - 320)$
9 fluorenone (9 EQ)	$100 \pm 100(57 + 750)$ $12 \pm 12(0.2 + 47)$	$66 \pm 71(0.2 - 22)$	$150 \pm 02 (15 - 520)$ $16 \pm 13 (10 - 47)$
anthraquinone (ATO)	$12 \pm 12 (0.2 - 47)$ 64 + 50 (1.1 - 282)	$0.0 \pm 7.1 (0.2 - 22)$ $37 \pm 29 (1.1 - 103)$	$10 \pm 13 (1.0 - 47)$ $83 \pm 53 (10 - 282)$
hangethrone (PTA)	$04 \pm 30 (1.1 - 282)$	$37 \pm 29 (1.1 - 103)$	$33 \pm 33 (10 - 282)$
benzaurone (BZA)	$22 \pm 22 (0.2 - 93)$	$12 \pm 13 (0.2 - 38)$	$29 \pm 24 (2.8 - 93)$
BaAQ)	$6.3\pm 5.3\;(0.5-24)$	$3.8\pm 3.9\;(0.5-16)$	$7.9\pm 5.4\;(1.3-24)$
1,4-chrysenequione (1,4-CQ)	$34\pm 34\ (2.0-168)$	$39 \pm 41 \ (9.2 - 168)$	$30 \pm 28 \ (2.0 - 136)$
5,12-naphthacenequione (5,12-NAQ)	$2.6\pm2.4\;(0.02-9.4)$	$1.6 \pm 2.1 \; (0.2 - 8.1)$	$3.2\pm2.4\;(0.5-9.4)$
6H-benzo(cd)pyrene-6-one			
(BPYRone)	47 ± 46 (0.5 – 196)	$32 \pm 45 \ (0.5 - 166)$	57 ± 45 (4.7 – 196)
	351 ± 196 (70 - 875)	311 ± 209 (70 – 875)	$378 \pm 185 \; (114 -$
Σ8OPAHs			815)
NPs			
4-nitrophenol (4NP)	$21 \pm 20 \; (0.4 - 95)$	$13 \pm 16 \ (0.42 - 54)$	$26 \pm 21 \; (1.8 - 95)$
3-methyl-4-nitrophenol (3M4NP)	$2.0 \pm 2.0 \ (0.04 - 7.8)$	$1.0 \pm 1.3 \; (0.04 - 4.8)$	$2.6 \pm 2.2 \ (0.16 - 7.8)$
4-nitroguaiacol (4NGA)	$1.0 \pm 1.4 \ (0.02 - 7.5)$	$0.5 \pm 0.8 \; (0.02 - 2.9)$	$1.4 \pm 1.6 \; (0.04 - 7.5)$
	$0.09 \pm 0.07 \ (0.01 -$	0.12 ± 0.07 (0.01 -	0.07 ± 0.06 (0.01 -
5-nitroguaiacol (5NGA)	0.3)	0.3)	0.22)
4-nitrocatechol (4NC)	$4.1 \pm 4.4 (0.1 - 21)$	$2.6 \pm 3.5 \ (0.1 - 16)$	$5.0 \pm 4.7 (0.39 - 21)$
	0.24 ± 0.29 (0.004 -	0.14 ± 0.22 (0.004 -	0.31 ± 0.31 (0.006 -
2,4-dinitrophenol (2,4-DNP)	1.3)	0.92)	1.3)
4-methyl-5-nitrocatechol (4M5NC)	48 ± 49 (8.7 – 385)	49 ± 35 (8.7 – 125)	40 ± 25 (8.9 – 116)
,	0.03 ± 0.03 (NA –	0.03 ± 0.03 (0.003 -	0.03 ± 0.03 (0.01 -
3-nitrosalicylic acid (3NSA)	0.17)	0.17)	0.13)
	0.63 ± 0.45 (0.07 -	$0.48 \pm 0.40 \ (0.07 -$	0.72 ± 0.46 (0.07 –
3-nitrosalicylic acid (5NSA)	1.8)	1.8)	1.8)
Σ9NPs	72 + 44 (4 2 - 175)	65 + 42 (42 - 149)	76 + 45(23 - 175)
	679 + 431 (134 -	497 + 362 (134 -	803 + 433 (185 -
Levonglucosan	1954)	1727)	1954)
	* * * 1 /	÷, –, ,	

Fig.5 Diurnal variation and component concentrations of PAHs (a, d), OPAHs (b, e), and NPs (c, f) before and during heating. Markers represent mean values, while whiskers denote the 25th and 75th percentiles.

304 **3.3 Source identification and quantitative analysis**

305 3.3.1 Primary Sources of Key Pollutants

306 To better understand the primary influencing factors, Pearson correlation analyses were conducted to analyze the relationships between OPAHs, PAHs, and NPs with key 307 308 PM_{2.5} components, gaseous pollutants, and VOC precursors. The results, presented in 309 Fig. 6a-c, include correlations with levoglucosan, Cl⁻, SO₂, NO₂, NO₃⁻, O₃, benzene, toluene, and xylene. A substantial positive correlation was observed between OPAHs, 310 311 PAHs, and NPs, suggesting a common source or similar formation mechanisms, particularly during the heating period. Furthermore, strong relationship was observed 312 between these aromatic compounds and primary pollutants throughout the sampling 313 campaign, such as levoglucosan (r=0.84(p < 0.001), 0.68 (p<0.01), 0.39 (p<0.05) for 314 315 PAHs, OPAHs, and NPs, respectively), and Cl⁻ (r=0.36 (p<0.05), 0.65 (p<0.001), 0.39 (p < 0.05), respectively) (Fig. 6b). These relationships were strengthened during heating, 316 317 especially for SO₂ (Fig.6c). The data suggests that the levels of aromatic compounds were substantially affected by burning emissions throughout the sampling period which 318 may be attributed to various sources such as biomass burning (Wang et al., 2017; Lin 319 320 et al., 2017; Chow et al., 2015) and coal combustion (Lu et al., 2019). Specifically, biomass burning emerged as a major source of pollution throughout the entire campaign, 321 322 while the contribution mediated by coal combustion increased remarkably during the heating period. 323

Fig.6 Correlations between PAHs, OPAHs, and NPs and key gas pollutants and aerosol components throughout the entire campaign (a), before heating (b), and during heating (c) (* p < 0.05, ** p < 0.01, *** p < 0.001); Source apportionments for PAHs (d, e, f), OPAHs (g, h, i), and NPs (j, k, l) during the whole campaign, before heating, and during heating, respectively; SF: secondary formation; FF: fossil fuel combustion; BB: biomass burning; CC: coal combustion; TE: traffic emission).

331 3.3.2 Source contribution

324

To further analyze the quantitative and qualitative effects of primary emissions as well as secondary formation, this study identified four categories of distinct sources during the campaign using the PMF model, as shown in Fig. S1. The first source factor, biomass burning, was recognized by the highest levoglucosan concentrations and increased particulate levels of K^+ and Cl^- within $PM_{2.5}$ (Fig. S1a). Biomass burning

337	emerged as the predominant source of aromatic compounds in the urban atmosphere of
338	Dongying during autumn and winter (Fig. 6d-1), contributing 87, 62, and 69% of the
339	total PAHs, OPAHs, and NPs, respectively, throughout the entire campaign (Fig.6d, g,
340	j). Moreover, the proportional contributions of burning biomass were also higher while
341	heating than before heating. A large number of PAHs, along with their derivatives,
342	originate from biomass combustion, as reported by various previously published studies
343	(Yhab et al., 2021; Chong et al., 2021; Bai et al., 2023; Li et al., 2022; Luo et al., 2021).
344	Several previous studies have also established that NPs are directly released during
345	biomass combustion and found emission factors over a range of 0.4 to 11.1 mg kg^{-1}
346	(Hoffmann et al., 2007; Iinuma et al., 2007; Wang et al., 2017b).

The second source factor was identified as coal combustion, having the highest 347 SO₂ concentration (Fig. S1b). The average contribution of coal combustion to PAHs 348 and NPs was determined as 13% and 14%, respectively (Fig.6d, j). Furthermore, there 349 were no significant changes to the relative contributions prior to and during the heating 350 phase. Previous research has indicated that coal combustion-related activities 351 352 significantly contribute to elevated levels of particulate PAHs and NPs, particularly during the heating season. (Lu et al., 2019; Wang et al., 2018; Ren et al., 2023; Cai et 353 al., 2022; Luo et al., 2021). 354

In comparison to the other factor profiles, the third source factor, traffic emission, showed a higher NO concentration loading in this factor profile (Fig. S1c). The average contribution of traffic emissions to OPAHs throughout the entire campaign was 13%, with no substantial variation in the percentage of emissions before and during heating

359	(14%). There was a minimal change in the contribution of traffic emissions to NPs both
360	before and during heating; on average, these emissions accounted for 6% of total NPs
361	during the campaign (Fig.6j-l). Previous studies have identified the traffic emission as
362	an essential source of OPAHs (Chong et al., 2021; Wang et al., 2022), and road traffic
363	as a primary contributor to NPs (Zhang et al., 2010; Ren et al., 2022). These differences
364	can be attributed to variations in energy use and industrial structures across different
365	cities.
366	Secondary formation, the fourth factor, displayed high concentrations of O ₃ and a
367	relatively higher abundance of SO_4^{2-} , NO_3^{-} , and NH_4^+ (Fig. S1d). Secondary formation
368	contributed an average of 25% of OPAHs throughout the whole campaign (Fig.6g- i).
369	It was the second-largest source, with a significantly higher contribution before heating

12% of NPs throughout the whole campaign, with higher contributions before heating
(22%) (Fig.6j- l). The vital role of secondary formation in contributing to both OPAHs
and NPs agreed with recent studies (Ren et al., 2024; Ren et al., 2022). Previous
modeling and field studies also identified secondary formation as a significant NPs

source in the atmosphere (Yuan et al., 2016b; Mayorga et al., 2021; Xie et al., 2017).

376 **3.4 Secondary formation mechanism based on quantum chemical calculations**

Aromatic hydrocarbons are a major class of VOCs that play a vital role in the production of secondary organic aerosols (SOA), particularly in urban areas (Song et al., 2021). However, this study reported the positive correlation of these aromatic

380	compounds with the key precursors (i.e. benzene, toluene, xylene), while a negative
381	correlation with NO ₂ , NO ₃ ⁻ and O ₃ , which are key parameters during the reaction
382	process (Fig.6a-c). Therefore, these substances were primarily derived from the same
383	source as the precursors, rather than their main products. Furthermore, considering the
384	substantial effect of biomass combustion, these compounds are probably the secondary
385	products formed through the oxidation process of gaseous pollutants released during
386	the biomass burning process. Nitroaromatic hydrocarbons are critical species in the
387	environment that are influenced by biomass combustion emissions. Phenol,
388	nitrobenzene, and P-Cresol are their significant precursors (Wang et al., 2020).
389	Therefore, to better comprehend the formation pathways of NPs, density functional
390	theory calculations at the M06-2X/6-311++G(2df,2p) level of theory were carried out
391	to explore the oxidation processes of major precursors by NO ₂ and OH, specifically for
392	the dominant species 4NP and 4M5NC (Huang et al., 2010; Roman et al., 2022;
393	Shenghur et al., 2014; Wang et al., 2019b). Electronic energies (EDFT), Gibbs free
394	energies (GDFT) as well as the imaginary frequency of the reactant monomers, reactant
395	complexes (RC), transition states (TS), intermediate (IM) and product complexes (PC)
396	at 298.15 K and 1 atm were collected in Tables S1-S4 of the Supplementary Information
397	The overall formation mechanisms, detailed in Fig. 7a, include both H-abstraction and
398	OH/NO_2 addition steps where Mechanisms 1 and 2 show the two-step formation
399	pathways for 4NP, while Mechanism 3 describes the four-step pathway for 4M5NC.

In the H-abstraction step, either an OH radical or NO₂ molecule abstracts a
hydrogen atom from the aromatic ring, forming an intermediate free radical (IM) and

402	resulting in the formation of H ₂ O or HONO. In the OH/NO ₂ addition step, the IMs react
403	with OH or NO_2 without any reaction barriers. In Table S1 of the Supplementary
404	Material, the calculated binding energy (E), Gibbs free energy change (ΔG) for the
405	reactant monomers, Gibbs free energy (G) , transition states (TS), reactant complexes
406	(RC), intermediate (IM) and PCs are presented. While Fig.7b exhibited the calculated
407	dominant formation mechanism of 4NP and 4M5NC along with the reaction barrier in
408	kcal/mol.

For the formation of 4NP, two precursors, phenol and nitrobenzene, were selected 409 which contain three distinct types of hydrogen atoms in their aromatic rings (ortho-, 410 meta-, and para-H). Here only the para-H is considered for the formation of 4NP. 411 During the daytime, when the gas-phase concentration of OH radicals is significant, 412 phenol initially reacts with OH to yield a reactant complex RC_{ph-OH} with a ΔG of 3.16 413 kcal/mol. Then RCph must overcome a reaction barrier of 8.64 kcal/mol to transition to 414 the TS_{ph-OH} state, resulting in the generation of IM1, a free radical intermediate with a 415 ΔG of -1.03 kcal/mol. The overall H-abstraction step was slightly exothermic, with a 416 reaction barrier of 11.80 kcal/mol. At nighttime, with a sharp decrease in OH 417 concentrations and a relatively higher level of NO2, the daytime-generated IM1 rapidly 418 proceeded through a reaction with NO2 that has no energy barrier, resulting in the 419 forming 4NP with a ΔG of -64.50 kcal/mol. 420

During nighttime, a parallel H-abstraction step occurred where NO₂, instead of OH, abstracted a hydrogen atom from phenol. However, this step had high overall reaction barriers, reaching 40.31 kcal/mol in the gas phase and 40.54 kcal/mol in the

424	liquid phase (water). Moreover, the reaction was highly endothermic with the ΔG of
425	36.51 and 36.45 kcal/mol in the gas phase and liquid phase, respectively, indicating that
426	the H-abstraction step initiated by NO ₂ was not feasible. Therefore, the calculations for
427	Mechanisms 2 and 3 focused solely on the H-abstraction step initiated by OH.
428	For an alternative formation pathway of 4NP from nitrobenzene during the
429	daytime, the overall H-abstraction step was slightly exothermic (-1.08 kcal/mol) with a
430	reaction barrier of 12.66 kcal/mol. The generated IM2 then proceeded through a highly
431	exothermic and barrier-free OH addition step to form 4NP. In a comparative analysis,
432	it was possible to initiate 4NP formation with both phenol and nitrobenzene. For
433	mechanism 1, phenol was preferred to undergo the H-abstraction reaction during the
434	daytime and the NO ₂ addition reaction at nighttime. For mechanism 2, nitrobenzene
435	preferred to undergo both reactions involving H-abstraction and OH addition during the
436	daytime.

437

The formation of 4M5NC followed a four-step mechanism with *p*-Cresol as the precursor. During the daytime, *p*-Cresol initially reacted with OH to form free radical intermediate IM3, overcoming a reaction barrier of 7.19 kcal/mol. After that, IM3 underwent a highly exothermic OH addition step without any energy barrier to form IM4 which was then proceeded through a reaction barrier of 11.83 kcal/mol to produce IM5. At nighttime, the IM5 formed during the daytime quickly reacted through a highly exothermic NO₂ addition step with no significant energy barrier, resulting in the

- 450 formation of 4M5NC, with a ΔG of -61.14 kcal/mol in the gas phase and -63.47
- 451 kcal/mol in the liquid phase.

452 4 Conclusions

PAHs, OPAH, and NACs in the PM2.5 samples were analyzed during autumn and 453 454 winter in Dongying, a petrochemical industrial city. The concentrations of all these 455 species were significantly greater during the heating period in comparison to before heating. Furthermore, these compounds demonstrated higher levels at night than during 456 the day, whereas NPs showed no notable diurnal variation. BbF, 1-NapA, and 4M5NC 457 were found to be the most abundant species for PAHs, OPAH, and NACs, respectively. 458 Biomass burning emerged as the primary source of aromatic compounds, particularly 459 during the heating period. Quantum chemical calculations revealed that the formation 460 mechanisms of 4NP and 4M5NC involve both H-abstraction and OH/NO₂ addition 461 steps with the H-abstraction step serving as the rate-limiting step, while the OH/NO2 462 addition step proceeded without an energy barrier. Phenol and P-Cresol were 463 determined as the primary precursors for the formation of 4NP and 4M5NC, 464 respectively. This study offers the first detailed investigation into the sources and 465 466 forming mechanisms of aromatic compounds in the atmosphere of petrochemical cities in the Yellow River Delta. It offers essential data and strategic guidance for reducing 467 aromatic compound emissions in such urban environments. 468

469 Data	availability
-----------------	--------------

- 470 The Data used in this study are available from the first author upon request (Yanqin
- 471 Ren via renyq@craes.org.cn).

472 Author contributions

- 473 YR, GW and YJ designed the research; YJ, FB and ZW collected the samples and
- 474 analyzed the data; YR and HZ wrote the manuscript; JL, RG, FL, ZL and HL
- 475 contributed to the paper with useful scientific discussions and comments.

476 Competing interests

477 The contact author has declared that none of the authors has any competing478 interests.

479 Acknowledgements

We are grateful to Mr. Xiaoyu Yan and Ms. Xurong Bai from Chinese Research
Academy of Environmental Sciences for their help in collecting samples, and Mr.
Yubao Chen and his colleagues from East China Normal University for providing help
with analytical testing.

484 Financial support

485	This research was supported by the National Research Program for Key Issues in
486	Air Pollution Control (No. DQGG202121, DQGG2021301), Key Technologies
487	Research and Development Program (No. 2023YFC3706105), Fundamental Research
488	Funds for Central Public Welfare Scientific Research Institutes of China (No.
489	2019YSKY-018), and the National Natural Science Foundation of China (No.
490	42130704; No. 41907197; No.22306179).
491	

492 **References**

493	Alves, C., Vicente, A., CustÃ3dio, D., Cerqueira, M., Nunes, T., Pio, C., Lucarelli, F., Calzolai, G., Nava,
494	S., and Diapouli, E.: Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs,
495	oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities, Sci. Total. Environ.,
496	595, 494-504, https://dx.doi.org/10.1016/j.scitotenv.2017.03.256, 2017.
497	Bai, X., Wei, J., Ren, Y., Gao, R., Chai, F., Li, H., Xu, F., and Kong, Y.: Pollution characteristics and
498	health risk assessment of Polycyclic aromatic hydrocarbons and Nitrated polycyclic aromatic
499	hydrocarbons during heating season in Beijing, JEnvS, 123, 169-182,
500	https://doi.org/10.1016/j.jes.2022.02.047, 2023.
501	Bandowe, B. A. M., Lueso, M. G., and Wilcke, W.: Oxygenated polycyclic aromatic hydrocarbons and
502	azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities
503	(Bratislava and Gothenburg), Chemosphere, 107, 407-414,
504	https://dx.doi.org/10.1016/j.chemosphere.2014.01.017, 2014.
505	Bandowe, B. A. M., Shukurov, N., Kersten, M., and Wilcke, W.: Polycyclic aromatic hydrocarbons
506	(PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the Angren industrial area,
507	Uzbekistan, Environ. Pollut., 158, 2888-2899, https://doi.org/10.1016/j.envpol.2010.06.012,
508	2010.
509	Bolton J.L. Trush M.A. Penning T.M. Dryhurst G. and Monks T.L. Role of autones in toxicology
	Botton, J. E., Hush, H. H., Fellining, T. H., Brynarst, G., and Honks, T. H. Role of quinones in toxicology,
510	Chem. Res. Toxicol., 13, 135-160, <u>https://doi.org/10.1021/tx9902082</u> , 2000.
510 511	 Chem. Res. Toxicol., 13, 135-160, <u>https://doi.org/10.1021/tx9902082</u>, 2000. Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting Bulk Viscosity
510 511 512	 Chem. Res. Toxicol., 13, 135-160, <u>https://doi.org/10.1021/tx9902082</u>, 2000. Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition,
510 511 512 513	 Botoli, V. E., Hash, M. A., Coming, F. M., Diyhard, G., and Monte, H. S. Toxicol, 13, 135-160, https://doi.org/10.1021/tx9902082, 2000. Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition, EnST, 48, 9298-9305, https://doi.org/10.1021/cs501705c, 2014.
510 511 512 513 514	 Chem. Res. Toxicol., 13, 135-160, <u>https://doi.org/10.1021/tx9902082</u>, 2000. Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition, EnST, 48, 9298-9305, <u>https://doi.org/10.1021/es501705c</u>, 2014. Cai, D., Wang, X., George, C., Cheng, T., Herrmann, H., Li, X., and Chen, J.: Formation of Secondary

516	https://doi.org/10.1029/2021JD036167, 2022.
517	Chen, L., Liu, W., Tao, S., and Liu, W.: Spatiotemporal variations and source identification of
518	atmospheric nitrated and oxygenated polycyclic aromatic hydrocarbons in the coastal cities of the
519	Bohai and Yellow seas in northern China, Chemosphere, 279, 130565,
520	http://doi.org/10.1016/j.chemosphere.2021.130565, 2021.
521	Chen, T., Xue, L., Zheng, P., Zhang, Y., Liu, Y., Sun, J., Han, G., Li, H., Zhang, X., Li, Y., Li, H., Dong,
522	C., Xu, F., Zhang, Q., and Wang, W.: Volatile organic compounds and ozone air pollution in an oil
523	production region in northern China, Atmos. Chem. Phys., 20, 7069-7086,
524	https://doi.org/10.5194/acp-20-7069-2020, 2020.
525	Chen, Y., Sheng, G., Bi, X., Feng, Y., Mai, B., and Fu, J.: Emission factors for carbonaceous particles
526	and polycyclic aromatic hydrocarbons from residential coal combustion in China, Environ. Sci.
527	Technol., 39, 1861-1867, https://doi.org/10.1021/es0493650, 2005.
528	Chong, W., Bambc, D., Yha, E., Jc, A., F , J., F , J., and Ww, G.: Polycyclic aromatic compounds (PAHs,
529	oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China:
530	Occurrence, gas/particle partitioning, and health risks, Sci. Total. Environ., 786, 147234,
531	https://doi.org/10.1016/j.scitotenv.2021.147234, 2021.
532	Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in atmospheric
533	fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary
534	formation derived from biomass burning emissions, Environmental Chemistry, 13, 665-673,
535	https://doi.org/10.1071/EN15174, 2015.
536	Chung, M. Y., Lazaro, R. A., Lim, D., Jackson, J., Lyon, J., Rendulic, D., and Hasson, A. S.: Aerosol-
537	borne quinones and reactive oxygen species generation by particulate matter extracts, Environ.
538	Sci. Technol., 40, 4880-4886, https://doi.org/10.1021/es0515957, 2006.
539	del Rosario Sienra, M., Rosazza, N. G., and Préndez, M.: Polycyclic aromatic hydrocarbons and their
540	molecular diagnostic ratios in urban atmospheric respirable particulate matter, Atmos. Res., 75,
541	267-281, https://doi.org/10.1016/j.atmosres.2005.01.003, 2005.
542	Elzein, A., Dunmore, R. E., Ward, M. W., Hamilton, J. F., and Lewis, A. C.: Variability of polycyclic
543	aromatic hydrocarbons and their oxidative derivatives in wintertime Beijing, China, Atmos. Chem.
544	Phys., 19, 8741-8758, https://doi.org/10.5194/acp-19-8741-2019, 2019.
545	Gonzalez, C. and Schlegel, H. B.: An improved algorithm for reaction path following, The Journal of
546	Chemical Physics, 90, 2154-2161, http://doi.org/10.1063/1.456010, 1989.
547	Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Olariu, R. I.: Nitrated phenols in
548	the atmosphere: a review, Atmos. Environ., 39, 231-248,
549	https://doi.org/10.1016/j.atmosenv.2004.09.044, 2005.
550	Huang, M., Wang, Z., Hao, L., and Zhang, W.: Theoretical investigation on the mechanism and kinetics
551	of OH radical with ethylbenzene, IJQC, 111, 3125-3134, http://doi.org/10.1002/qua.22751, 2010.
552	Jakober, C. A., Riddle, S. G., Robert, M. A., Destaillats, H., Charles, M. J., Green, P. G., and Kleeman,
553	M. J.: Quinone emissions from gasoline and diesel motor vehicles, Environ. Sci. Technol., 41,
554	4548-4554, https://doi.org/10.1021/es062967u, 2007.
555	Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys, M., and
556	Maenhaut, W.: One-year study of nitro-organic compounds and their relation to wood burning in
557	PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568,
558	https://dx.doi.org/10.1016/j.atmosenv.2013.09.041, 2013.
559	Kashiwakura, K. and Sakamoto, K.: Emission Characteristics and Cancer Risks of Polycyclic Aromatic

560	Hydrocarbon Emissions from Diesel-fueled Vehicles Complying with Recent Regulations, J.
561	Health Sci., 56, 200-207, https://doi.org/10.1248/jhs.56.200, 2010.
562	Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size
563	distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from
564	southern and central Europe - implications for the origin, Atmos. Chem. Phys., 20, 2471-2487,
565	https://doi.org/10.5194/acp-20-2471-2020, 2020.
566	Lammel, G., Kitanovski, Z., Kukucka, P., Novák, J., and Wietzoreck, M.: Oxygenated and nitrated
567	polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air - levels, phase partitioning,
568	mass size distributions and inhalation bioaccessibility, Environ. Sci. Technol., 54, 2615-2625,
569	https://dx.doi.org/10.1021/acs.est.9b06820, 2020.
570	Li, J. J., Wang, G. H., Wang, X. M., Cao, J. J., Sun, T., Cheng, C. L., Meng, J. J., Hu, T. F., and Liu, S.
571	X.: Abundance, composition and source of atmospheric PM _{2.5} at a remote site in the Tibetan
572	Plateau, China, Tellus B., 65, 20281, https://doi.org/10.3402/tellusb.v65i0.20281, 2013.
573	Li, X., Yang, Y., Liu, S., Zhao, Q., Wang, G., and Wang, Y.: Light absorption properties of brown carbon
574	(BrC) in autumn and winter in Beijing: Composition, formation and contribution of nitrated
575	aromatic compounds, Atmos. Environ., 223, 117289,
576	https://doi.org/10.1016/j.atmosenv.2020.117289, 2020.
577	Li, Y. and Wang, L.: The atmospheric oxidation mechanism of 1,2,4-trimethylbenzene initiated by OH
578	radicals, PCCP, 16, <u>http://doi.org/10.1039/c4cp02027h</u> , 2014.
579	Li, Y., Bai, X., Ren, Y., Gao, R., Ji, Y., Wang, Y., and Li, H.: PAHs and nitro-PAHs in urban Beijing from
580	2017 to 2018: Characteristics, sources, transformation mechanism and risk assessment, J. Hazard.
581	Mater., 436, 1-11, https://doi.org/10.1016/j.jhazmat.2022.129143, 2022.
582	Liang, Y., Wang, X., Dong, S., Liu, Z., Mu, J., Lu, C., Zhang, J., Li, M., Xue, L., and Wang, W.: Size
583	distributions of nitrated phenols in winter at a coastal site in north China and the impacts from
583 584	distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256,
583 584 585	distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020.
583 584 585 586	distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u> , 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry
583 584 585 586 587	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci.
583 584 585 586 587 588	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017.
583 584 585 586 587 588 589	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization
583 584 585 586 587 588 589 590	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-
583 584 585 586 587 588 589 590 590 591	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, <u>https://doi.org/10.1039/c5cp02563j</u>, 2015a.
583 584 585 586 587 588 589 590 590 591 592	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and
583 584 585 586 587 588 589 590 591 591 592 593	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂.
583 584 585 586 587 588 589 590 591 592 592 593 594	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM_{2.5} in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628,
583 584 585 586 587 588 589 590 591 592 593 592 593 594 595	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂. 5 in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b.
583 584 585 586 587 588 589 590 591 592 593 594 593 594 595 596	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, <u>https://doi.org/10.1039/c5cp02563j</u>, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂. ₅ in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, <u>https://doi.org/10.1002/2015JD023628</u>, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂ s in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ.,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂. s in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ., 203, 10-17, https://doi.org/10.1016/j.atmosenv.2019.01.047, 2019.
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂. 5 in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ., 203, 10-17, https://doi.org/10.1016/j.atmosenv.2019.01.047, 2019. Lu, C., Wang, X., Zhang, J., Liu, Z., Liang, Y., Dong, S., Li, M., Chen, J., Chen, H., Xie, H., Xue, L.,
583 584 585 586 587 588 589 590 591 592 593 594 593 594 595 596 597 598 599 600	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, <u>https://doi.org/10.1016/j.chemosphere.2020.126256</u>, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, <u>https://doi.org/10.1039/c5cp02563j</u>, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂ 5 in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, <u>https://doi.org/10.1002/2015JD023628</u>, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ., 203, 10-17, <u>https://doi.org/10.1016/j.atmosenv.2019.01.047</u>, 2019. Lu, C., Wang, X., Zhang, J., Liu, Z., Liang, Y., Dong, S., Li, M., Chen, J., Chen, H., Xie, H., Xue, L., and Wang, W.: Substantial emissions of nitrated aromatic compounds in the particle and gas
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂. 5 in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ., 203, 10-17, https://doi.org/10.1016/j.atmosenv.2019.01.047, 2019. Lu, C., Wang, X., Zhang, J., Liu, Z., Liang, Y., Dong, S., Li, M., Chen, J., Chen, H., Xie, H., Xue, L., and Wang, W.: Substantial emissions of nitrated aromatic compounds in the particle and gas phases in the waste gases from eight industries, Environ. Pollut, 283, 117132,
583 584 585 586 587 588 589 590 591 592 593 594 595 594 595 596 597 598 599 600 601 602	 distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020. Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561-11570, https://doi.org/10.1021/acs.est.7b02276, 2017. Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, PCCP, 17, 23312-23325, https://doi.org/10.1039/c5cp02563j, 2015a. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., Wang, J., Zhu, Y., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM₂, 5 in Beijing, J. Geophys. ResAtmos., 120, 7219-7228, https://doi.org/10.1002/2015JD023628, 2015b. Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.: Emissions of fine particulate nitrated phenols from residential coal combustion in China, Atmos. Environ., 203, 10-17, https://doi.org/10.1016/j.atmosenv.2019.01.047, 2019. Lu, C., Wang, X., Zhang, J., Liu, Z., Liang, Y., Dong, S., Li, M., Chen, J., Chen, H., Xie, H., Xue, L., and Wang, W.: Substantial emissions of nitrated aromatic compounds in the particle and gas phases in the waste gases from eight industries, Environ. Pollut., 283, 117132, https://doi.org/10.1016/j.envpol.2021.117132, 2021.

604	Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area
605	of Beijing, China, Atmos, 12, https://doi.org/10.3390/atmos12030323, 2021.
606	Ma, L., Li, B., Liu, Y., Sun, X., Fu, D., Sun, S., Thapa, S., Geng, J., Qi, H., Zhang, A., and Tian, C.:
607	Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons
608	(PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China, Journal of Cleaner
609	Production, 264, https://doi.org/10.1016/j.jclepro.2020.121673, 2020.
610	Mayorga, R. J., Zhao, Z., and Zhang, H.: Formation of secondary organic aerosol from nitrate radical
611	oxidation of phenolic VOCs: Implications for nitration mechanisms and brown carbon formation,
612	Atmos. Environ., 244, https://doi.org/10.1016/j.atmosenv.2020.117910, 2021.
613	Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., t, A. S. H. P., Xu, L., Ng, N. L., Herndon, S. C., Williams, L.
614	R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K.
615	J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of Nitrated Phenols to Wood
616	Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time,
617	Environ. Sci. Technol., 47, 6316-6324, https://doi.org/10.1021/es400683v, 2013.
618	Oda, J., Nomura, S., Yasuhara, A., and Shibamoto, T.: Mobile sources of atmospheric polycyclic aromatic
619	hydrocarbons in a roadway tunnel, Atmos. Environ., 35, 4819-4827,
620	https://doi.org/10.1016/S1352-2310(01)00262-X, 2001.
621	Pedersen, D. U., Durant, J. L., Taghizadeh, K., Hemond, H. F., Lafleur, A. L., and Cass, G. R.: Human
622	cell mutagens in respirable airborne particles from the northeastern United States. 2.
623	Quantification of mutagens and other organic compounds, Environ. Sci. Technol., 39, 9547-9560,
624	https://doi.org/10.1021/es050886c 2005.
625	Peng, B., Dong, Q., Li, F., Wang, T., Qiu, X., and Zhu, T.: A systematic review of polycyclic aromatic
606	hydrocarbon derivatives; occurrences levels biotransformation exposure biomarkers and
020	hydrocarbon derivatives. becurrences, levels, biotransformation, exposure biomarkers, and
626 627	toxicity, Environtal Science & Technology, 57, 15314-15335,
626 627 628	toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023.
627 628 629	 toxicity, Environtal Science & Technology, 57, 15314-15335, <u>https://doi.org/10.1021/acs.est.3c03170</u>, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and
627 628 629 630	 Inverse inverses occurrences, inverse origination, exposure origination, ex
626 627 628 629 630 631	 Inverse inverses occurrences, inverse obtainstormation, exposure obtainances, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023.
620 627 628 629 630 631 632	 Inydrocaroon derivatives: occurrences, revers, obtrainstormation, exposure oromateers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023.
620 627 628 629 630 631 632 633	 Inydrocaroon derivatives: occurrences, revers, obtrainstormation, exposure oformatices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under
626 627 628 629 630 631 632 633 634	 Inydrocaroon derivatives: occurrences, revers, oronaistormation, exposure oronaixers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of
626 627 628 629 630 631 632 633 633 634 635	 Inydrocaroon derivatives: occurrences, revers, obtrainstormation, exposure obtraineers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982,
626 627 628 629 630 631 632 633 633 634 635 636	 Inydrocarbon derivatives: occurrences, revers, biotransformation, exposure biomarkers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022.
626 627 628 629 630 631 632 633 634 635 636 637	 Inydrocarbon derivatives: occurrences, revers, biotransformation, exposure biomatices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components
626 627 628 629 630 631 632 633 634 635 636 637 638	 Inydrocaroon derivatives: occurrences, revers, obortatistormation, exposure biomarkets, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass
626 627 628 629 630 631 632 633 634 635 636 637 638 639	 Inydrocaroon derivatives: occurrences, revers, obortatistormation, exposure oformatices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021.
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640	 Inydrocaroon derivatives: occurrences, revers, obtrainstormation, exposure obtraineers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary
626 627 628 629 630 631 632 633 634 635 634 635 636 637 638 639 640 641	 Inviroation derivatives: occurrences, revers, biotranstormation, exposure biomatters, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642	 Inydrocaroon derivatives: occurrences, revers, oronalistormation, exposure biomatices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing, Atmos. Chem. Phys., 24, 6525-6538,
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643	 Inydrocaroon derivatives: occurrences, revers, oronalistormation, exposure biomarkers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing, Atmos. Chem. Phys., 24, 6525-6538, https://doi.org/10.5194/acp-24-6525-2024, 2024.
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644	 Invalocation derivatives: occurrences, revels, biotranstormation, exposure biomarkers, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing, Atmos. Chem. Phys., 24, 6525-6538, https://doi.org/10.5194/acp-24-6525-2024, 2024. Ren, Y., Zhou, B., Tao, J., Cao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao,
626 627 628 629 630 631 632 633 634 635 634 635 636 637 638 639 640 641 642 643 644 645	 Inducation derivatives: occurrences, revers, orotransformation, exposure oromatices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing, Atmos. Chem. Phys., 24, 6525-6538, https://doi.org/10.5194/acp-24-6525-2024, 2024. Ren, Y., Zhou, B., Tao, J., Cao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao, C., and Wang, G.: Composition and size distribution of airborne particulate PAHs and oxygenated
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	 Inyubcaroon derivatives: occurrences, revels, fourialistonnation, exposure ofontarices, and toxicity, Environtal Science & Technology, 57, 15314-15335, https://doi.org/10.1021/acs.est.3c03170, 2023. Ren, Y., Wang, G., Wei, J., Tao, J., Zhang, Z., and Li, H.: Contributions of primary emissions and secondary formation to nitrated aromatic compounds in themountain background region of Southeast China, Atmos. Chem. Phys., 23, 6835-6848, https://doi.org/10.5194/acp-23-6835-2023, 2023. Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982, https://doi.org/10.1016/j.envres.2021.111982, 2022. Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and Li, H.: Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust, Atmos. Res., 105412, https://doi.org/10.1016/j.atmosres.2020.105412, 2021. Ren, Y., Wu, Z., Ji, Y., Bi, F., Li, J., Zhang, H., Zhang, H., Li, H., and Wang, G.: Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing, Atmos. Chem. Phys., 24, 6525-6538, https://doi.org/10.5194/acp-24-6525-2024, 2024. Ren, Y., Zhou, B., Tao, J., Cao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao, C., and Wang, G.: Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities, Atmos. Res., 183, 322-330

648	Roman, C., Arsene, C., Bejan, I. G., and Olariu, R. I.: Investigations into the gas-phase photolysis and
649	OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their
650	atmospheric behaviour, Atmos. Chem. Phys., 22, 2203-2219, http://doi.org/10.5194/acp-22-2203-
651	<u>2022,</u> 2022.
652	Sarigiannis, D. A., Karakitsios, S. P., Dimitrios, Z., Spyridoula, N., and Marianthi, K.: Lung cancer risk
653	from PAHs emitted from biomass combustion, Environ. Res., 137, 147-156,
654	https://dx.doi.org/10.1016/j.envres.2014.12.009, 2015.
655	Shen, G., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., Xue, M., Ding, J., Wang, B., and Wang, R.:
656	Emission factors of particulate matter and elemental carbon for crop residues and coals burned in
657	typical household stoves in China, Environ. Sci. Technol., 44, 7157-7162,
658	https://doi.org/10.1021/es101313y, 2010.
659	Shenghur, A., Weber, K. H., Nguyen, N. D., Sontising, W., and Tao, FM.: Theoretical Study of the
660	Hydrogen Abstraction of Substituted Phenols by Nitrogen Dioxide as a Source of HONO, The
661	Journal of Physical Chemistry A, 118, 11002-11014, http://doi.org/10.1021/jp508516c, 2014.
662	Song, M., Liu, Y., Li, X., and Lu, S.: Advances on Atmospheric Oxidation Mechanism of Typical
663	Aromatic Hydrocarbons, Acta Chim. Sinica, 79, 1214-1231, https://doi.org/10.6023/a21050224,
664	2021.
665	Takano, Y. and Houk, K. N.: Benchmarking the Conductor-like Polarizable Continuum Model (CPCM)
666	for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules, Journal of
667	Chemical Theory and Computation, 1, 70-77, http://doi.org/10.1021/ct049977a, 2005.
668	Teich, M., Van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G., and Herrmann,
669	H.: Contributions of nitrated aromatic compounds to the light absorption of water-soluble and
670	particulate brown carbon in different atmospheric environments in Germany and China, Atmos.
671	Chem. Phys., 17, 1653-1672, https://doi.org/10.5194/acp-17-1653-2017, 2017.
672	Wang, L., Wang, X., Gu, R., Hao, W., and Wang, W.: Observations of fine particulate nitrated phenols in
673	four sites in northern China: concentrations, source apportionment, and secondary formation,
674	Atmos. Chem. Phys., 18, 4349–4359, https://doi.org/10.5194/acp-18-4349-2018, 2018.
675	Wang, L., Dong, S., Liu, M., Tao, W., Xiao, B., Zhang, S., Zhang, P., and Li, X.: Polycyclic aromatic
676	hydrocarbons in atmospheric PM2.5 and PM10 in the semi-arid city of Xi'an, Northwest China:
677	Seasonal variations, sources, health risks, and relationships with meteorological factors, Atmos.
678	Res., 229, 60-73, https://doi.org/10.1016/j.atmosres.2019.06.014, 2019a.
679	Wang, T., Zhao, J., Liu, Y., Peng, J., Wu, L., and Mao, H.: PM2.5-Bound Polycyclic Aromatic
680	Hydrocarbons (PAHs), Nitrated PAHs (NPAHs) and Oxygenated PAHs (OPAHs) in Typical
681	Traffic-Related Receptor Environments, Journal of Geophysical Research, D. Atmospheres, 127,
682	e2021JD035951, https://doi.org/10.1029/2021JD035951, 2022.
683	Wang, W., Jariyasopit, N., Schrlau, J., Jia, Y., Tao, S., Yu, TW., Dashwood, R. H., Zhang, W., Wang, X.,
684	and Simonich, S. L. M.: Concentration and photochemistry of PAHs, NPAHs, and OPAHs and
685	toxicity of PM _{2.5} during the Beijing Olympic Games, Environ. Sci. Technol., 45, 6887-6895,
686	http://dx.doi.org/10.1021/es201443z, 2011.
687	Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., and Wang, W.:
688	Emissions of fine particulate nitrated phenols from the burning of five common types of biomass.
689	Environ. Pollut., 230, 405-412, http://dx.doi.org/10.1016/i.envpol.2017.06.072, 2017.
690	Wang, Y., Hu, M., Li, X., and Xu, N.: Chemical Composition. Sources and Formation Mechanisms of
691	Particulate Brown Carbon in the Atmosphere (in Chinese), Progress in Chemistry, 32, 627-645,

692	http://doi.org/10.7536/PC190917, 2020.
693	Wang, Y., Hu, M., Wang, Y., Zheng, J., Shang, D., Yang, Y., Liu, Y., Li, X., Tang, R., Zhu, W., Du, Z.,
694	Wu, Y., Guo, S., Wu, Z., Lou, S., Hallquist, M., and Yu, J. Z.: The formation of nitro-aromatic
695	compounds under high NO _{<i>x</i>} and anthropogenic VOC
696	conditions in urban Beijing, China, Atmos. Chem. Phys., 19, 7649-7665,
697	http://doi.org/10.5194/acp-19-7649-2019, 2019b.
698	Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z.,
699	and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size
700	distributions and optical properties, Atmos. Chem. Phys., 20, 2017-2030,
701	https://doi.org/10.5194/acp-20-2017-2020, 2020.
702	Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., and Holder, A.
703	L.: Light Absorption of Secondary Organic Aerosol: Composition and Contribution of
704	Nitroaromatic Compounds, Environ. Sci. Technol., 51, 11607-11616,
705	https://doi.org/10.1021/acs.est.7b03263, 2017.
706	Yhab, D., Xxab, C., Dan, L. E., Xjab, C., Zha, B., Yca, B., Lxa, B., Mla, B., Hong, W. G., and Han, Z.:
707	Air pollution increases human health risks of PM 2.5 -bound PAHs and nitro-PAHs: a case study
708	in the Yangtze River Delta, China, Sci. Total. Environ., 770, 145402,
709	https://doi.org/10.1016/j.scitotenv.2021.145402, 2021.
710	Yuan, B., Liggio, J., Wentzell, J., Li, S. M., and Stark, H.: Secondary formation of nitrated phenols:
711	insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014, Atmos.
712	Chem. Phys., 16, 2139-2153, http://doi.org/10.5194/acp-16-2139-2016, 2016a.
713	Yuan, B., Liggio, J., Wentzell, J., Li, S. M., and Stark, H.: Secondary formation of nitrated phenols:
714	insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014, Atmos.
715	Chem. Phys., <u>https://doi.org/10.5194/acp-16-2139-2016</u> , 2016b.
716	Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., Jiang, P., Li, Y., Yu, H., and Wang, W.:
717	Diurnal concentrations, sources, and cancer risk assessments of PM2.5-bound PAHs, NPAHs, and
718	OPAHs in urban, marine and mountain environments, Chemosphere, 209, 147-155,
719	https://doi.org/10.1016/j.chemosphere.2018.06.054, 2018.
720	Zhang, Y. Y., Müller, L., Winterhalter, R., Moortgat, G. K., Hoffmann, T., and Poschl, U.: Seasonal cycle
721	and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in
722	fine and coarse air particulate matter, Atmos. Chem. Phys., 10, 7859 - 7873,
723	https://doi.org/10.5194/acp-10-7859-2010, 2010.
724	Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main group thermochemistry,
725	thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two
726	new functionals and systematic testing of four M06-class functionals and 12 other functionals,
727	Theor. Chem. Acc., 120, 215-241, <u>http://doi.org/10.1007/s00214-007-0310-x</u> , 2007.