Preprints
https://doi.org/10.5194/egusphere-2024-913
https://doi.org/10.5194/egusphere-2024-913
12 Apr 2024
 | 12 Apr 2024

Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5/NEMOv3.4

Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen

Abstract. We report on the first multi-year km-scale global coupled simulations using ECMWF’s Integrated Forecasting System (IFS) coupled to both the NEMO and FESOM ocean-sea ice models, as part of the Horizon 2020 Next Generation Earth Modelling Systems (nextGEMS) project. We focus mainly on the two unprecedented IFS-FESOM coupled setups, with an atmospheric resolution of 2.8 km and 4.4 km, respectively, and the same spatially varying ocean resolution that reaches locally below 5 km grid-spacing. This is enabled by a refactored ocean model code that allows for more efficient coupled simulations with IFS in a single-executable setup, employing hybrid parallelisation with MPI and OpenMP. A number of shortcomings in the original NWP-focussed model configurations were identified and mitigated over several cycles collaboratively by the modelling centres, academia, and the wider nextGEMS community. The main improvements are (i) better conservation properties of the coupled model system in terms of water and energy balance, which benefit also ECMWF’s operational 9 km IFS-NEMO model, (ii) a realistic top-of-the-atmosphere (TOA) radiation balance throughout the year, (iii) improved intense precipitation characteristics, and (iv) eddy-resolving features in large parts of the mid- and high-latitude oceans (finer than 5 km grid-spacing) to resolve mesoscale eddies and sea ice leads. New developments made at ECMWF for a better representation of snow and land use, including a dedicated scheme for urban areas, were also tested on multi-year timescales. We provide first examples of significant advances in the realism and thus opportunities of these km-scale simulations, such as a clear imprint of resolved Arctic sea ice leads on atmospheric temperature, impacts of km-scale urban areas on the diurnal temperature cycle in cities, and better propagation and symmetry characteristics of the Madden-Julian Oscillation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

10 Jan 2025
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-913', Anonymous Referee #1, 24 Apr 2024
  • RC2: 'Comment on egusphere-2024-913', Anonymous Referee #2, 21 May 2024
  • RC3: 'Comment on egusphere-2024-913', Anonymous Referee #3, 21 Jun 2024
  • AC1: 'Comment on egusphere-2024-913 / reply to reviewers', Thomas Rackow, 11 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-913', Anonymous Referee #1, 24 Apr 2024
  • RC2: 'Comment on egusphere-2024-913', Anonymous Referee #2, 21 May 2024
  • RC3: 'Comment on egusphere-2024-913', Anonymous Referee #3, 21 Jun 2024
  • AC1: 'Comment on egusphere-2024-913 / reply to reviewers', Thomas Rackow, 11 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Thomas Rackow on behalf of the Authors (11 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (06 Oct 2024) by Peter Caldwell
AR by Thomas Rackow on behalf of the Authors (28 Oct 2024)  Manuscript 

Journal article(s) based on this preprint

10 Jan 2025
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen

Model code and software

FESOM2.5 source code used in nextGEMS Cycle 3 simulations with IFS-FESOM Thomas Rackow et al. https://zenodo.org/doi/10.5281/zenodo.10225419

Source code changes to the Integrated Forecasting System (IFS) for nextGEMS simulations Thomas Rackow et al. https://zenodo.org/doi/10.5281/zenodo.10223576

Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen

Viewed

Total article views: 1,836 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,349 445 42 1,836 33 28
  • HTML: 1,349
  • PDF: 445
  • XML: 42
  • Total: 1,836
  • BibTeX: 33
  • EndNote: 28
Views and downloads (calculated since 12 Apr 2024)
Cumulative views and downloads (calculated since 12 Apr 2024)

Viewed (geographical distribution)

Total article views: 1,835 (including HTML, PDF, and XML) Thereof 1,835 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 10 Jan 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.