Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-868
https://doi.org/10.5194/egusphere-2024-868
24 Apr 2024
 | 24 Apr 2024

Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer

Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson

Abstract. Ground-based lidar data have proven extremely useful for profiling the convective boundary layer (CBL). Many groups have derived higher order moments (e.g., variance, skewness, fluxes) from high temporal resolution lidar data using an autocovariance approach. However, these analyses are highly uncertain near the CBL top when the depth of the CBL (zi) is changing during the analysis period. This is because the autocovariance approach is usually applied to constant height levels and the character of the eddies are changing on either side of the changing CBL top. Here, a new approach is presented wherein the autocovariance analysis is performed on a normalized height grid, with a temporally smoothed zi. Output from a large eddy simulation model demonstrates that deriving higher order moments from time series on a normalized height grid has better agreement with the slab averaged quantities than the moments derived from the original height grid.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Nov 2024
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This work used model output to show that considering the changes in boundary layer depth over...
Share