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Abstract. Ground-based lidar data have proven extremely useful for profiling the convective boundary layer (CBL). Many

groups have derived higher order moments (e.g., variance, skewness, fluxes) from high temporal resolution lidar data using an

autocovariance approach. However, these analyses are highly uncertain near the CBL top when the depth of the CBL (zi) is

changing during the analysis period. This is because the autocovariance approach is usually applied to constant height levels

and the character of the eddies are changing on either side of the changing CBL top. Here, a new approach is presented wherein5

the autocovariance analysis is performed on a normalized height grid, with a temporally smoothed zi. Output from a large eddy

simulation model demonstrates that deriving higher order moments from time series on a normalized height grid has better

agreement with the slab averaged quantities than the moments derived from the original height grid.

1 Introduction

The atmospheric boundary layer (ABL) is the lowest portion of the atmosphere, typically ranging in depth from 10 m in10

extremely stable conditions to over 3 km, that interacts directly with the surface and is responsible for the majority of our

weather
::::::::::
(Stull, 1988). In particular, the ABL often has significant variability over the diurnal cycle due to the changing net

radiation at the surface caused by the solar cycle. During the day when the surface is being heated by the sun, turbulent

eddies rising from the surface create a well-mixed convective boundary layer (CBL) with turbulent eddies that range from

approximately the size of the depth of the CBL (which will be denoted here as zi) to sub-meter in size. Understanding and15

characterizing the properties of this turbulent CBL is critical to improve the modeling of transport and mixing within the CBL

in weather and climate models
::::::::::::::
(Deardorff (1974)

:
;
:::::::::::::::
Wilde et al. (1985)

:
).

Observations of turbulent mixing have been made for many dozens of years. Today’s technologies include rapid response

sonic anemometers and gas analyzers for in-situ observations, scintillometers for open path observations over larger volumes,

and lidar observations from which profiles of turbulent moments can be derived. Higher order moments, such as the variance20

and skewness of a scalar as well as covariances between two geophysical variables (e.g., water vapor and vertical motion),

are used to describe the turbulence in the CBL statistically. There are multiple areas where better understanding of these
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higher order moments is useful. For example, moisture variance in the CBL is important for understanding the boundary layer

moisture budget (Deardorff (1974); Lenschow and Wyngaard (1980); Huang et al. (2011)), the development of boundary layer

clouds (Wilde et al. (1985); Golaz et al. (2002); Berg and Stull (2005)), and understanding the development of deep convection25

(e.g., Berg et al. (2013)). Indeed, Wulfmeyer et al. (2016) Wulfmeyer et al. (2016) outlined a powerful approach that could be

used to evaluate a wide range of similarity relationships that relate vertical gradients and mean profiles to turbulent moments

using advanced ground-based lidar observations; similarity relationships often form the basis of turbulent parameterizations

used within mesoscale and climate models.

Here, we focus on lidar observations of turbulent moments within the CBL. Lidar observations of water vapor (e.g., Muppa30

et al. (2016); Turner et al. (2014)), temperature (Behrendt et al. (2015)), vertical motions (Berg et al. (2017); Lenschow et al.

(2012)), aerosols (McNicholas and Turner (2014)), and fluxes (Behrendt et al. (2020); Kiemle et al. (2007); Senff et al. (1994))

have been used to derive higher-order moments in various locations. Lidar data, however, are frequently noisy due to both

changing solar contributions and instrument noise, and thus separating out the atmospheric component to the higher order

moments from the noise is challenging. Most lidar groups analyzing higher order moments use the autocovariance technique35

pioneered by Lenschow et al. (2000) (2000; hereafter L-2000) to separate the two contributions, wherein the moments at lags

above zero, which do not have any contribution from the instrument error which is assumed to be uncorrelated with time, are

interpolated back to lag 0.

The L-2000 approach assumes that the turbulent nature of the CBL is not changing with time since statistics are derived

from high-temporal resolution time series, given that the lidars are most often measuring very small volumes in the vertical40

column above/below the lidar. Furthermore, as the larger eddies carry the most energy yet also occur less frequently, the time

window analyzed must be sufficiently long to reduce the sampling error
:::::::::
uncertainty (Lenschow et al. (1994); hereafter L-1994).

The two constraints provided by L-1994 and L-2000 restricts the analysis of lidar data to 1-to-2-hour periods when the CBL

is quasi-stationary (i.e., where zi is not changing with time); these conditions are most commonly found in the mid-to-late

afternoon (e.g., from 15:00 to 17:00 CDT in Figure 1).45

However, there is a strong desire to be able to derive higher order moments from lidar observations when the CBL is rapidly

evolving, such as the time period after the morning transition to when the CBL stops growing (e.g., from 10:00 to 15:00 CDT

in Figure 1). Some studies have derived higher order moments from lidar data during periods when zi is rapidly changing; this

is often done by using
:::::::::
restricting

:::
the

:::::::
analysis

::
to shorter time periods to derive the statistics (e.g., the 30-min window used in

Berg et al. (2017)), which results in larger sampling uncertainties (per L-1994). Furthermore, all of these analyses are done on50

a fixed height grid; i.e., the higher order moments are derived by looking at the time series at each range gate (height) observed

by the lidar. This approach of using a fixed height grid from which to define the moments is insufficient at the top of the CBL

when zi passes through the height layer being analyzed (zanal) during the analysis period (i.e., when zi < zanal early in the

period and zi > zanal at the end of the period).

::::
This

::::
work

:::::::
presents

::
a

:::
new

::::::::
approach

::::::::
(outlined

::
in

::::::
Section

::
2)

::
to
:::::::
analyze

::::
lidar

::::::
profile

::::::::::
observations

::::
over

::::
time

:::::
when

:::
the

::::::
height

::
of55

::
the

:::::
CBL

::
is

::::::::
changing

::::
over

:::
that

:::::
time.

::::
The

:::::::
approach

::
is
:::::::
simple:

::::::
change

:::
the

:::::::
vertical

:::::::::
coordinate

::::
from

::::::
height

::
to

:::::::::
normalized

::::::
height

:::::
before

:::::::::
computing

:::
the

::::::::
statistics

::::
over

:::::::
temporal

::::::::
windows.

::::
This

:::::
paper

:::::::::::
demonstrates

::::
this

::::::::
approach

::::
using

::::::
output

::::
from

::
a
::::
large

:::::
eddy
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Figure 1. CBL depth over time, derived from the slab values (orange
:::::
black,

:::::
<zi(t)>), from the instantaneous 10-s values of a single column

(blue,
:::::
zc,i(t)), and the 30-

::
60- minute temporal average of the instantaneous values of the single column (green

::::::
orange,

::::
zc,i(t)).

::::::::
simulation

::::::
model

:::::::
(Section

:::
3),

:::::::
wherein

:::
we

:::
can

:::
use

::
a
:::::
single

:::::::
column

::
to

::::::::::
approximate

:::
the

::::
lidar

:::::::::::
observations

::::
and

:::::
spatial

::::::::
statistics

::
to

::::
serve

::
as

:::::
truth.

:

2 Approach60

Our proposed approach is simple: instead of deriving higher order moments on a fixed height grid (z), the data are transformed

to a normalized height grid (ẑ = z/zi) where the overbar indicated
:::::::
indicates

:
a temporal average. The advantage of this scheme

is that, if ẑ < 1(> 1) for the entire analysis period then it is known that the time-series is entirely within (above) the CBL. This
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greatly simplifies the understanding of the statistics. The challenge thus becomes understanding the time period over which to

derive zi and demonstrating that computing the moments on the ẑ grid is more accurate than using the regular z grid.65

To investigate this, we utilized large eddy simulations of the CBL. The simulation used ARM’s constrained variational

analysis (VARANAL) for initial and boundary conditions (Xie (2017)). VARANAL yields values for surface fluxes, large-scale

advective and radiative tendencies that are spatially averaged over the entire ARM SGP
::::::::
ARm sGP domain. These simulations

were performed with the MicroHH model (Heerwaarden et al. (2017)), using 25 m horizontal spacing over a 10 km by 10

km domain and 15 m vertical resolution. Statistics derived instantaneously
:::::
output

:::::
every

:::::::::
5-minutes

:::
and

:::::::
derived over the entire70

domain were used as truth, and the lidar data were simulated by extracting out a high temporal resolution
::::
(10-s)

:
time-series as

:
at
:
a single location in the middle of the domain. For this work, we will show results from 8 August 2017 over the Department

of Energy Atmospheric Radiation Measurement (ARM) program (Turner and Ellingson (2016)) Southern Great Plains (SGP)

site (Sisterson et al. (2016)). However, very similar results were found on other days, and these are not shown.

The evolution of the depth of the CBL (i.e., zi) from the LES, derived three different ways
::::::
through

:::::
three

:::::::
different

:::::::
methods,75

is shown in Figure 1. All three methods compute zi as the level of neutral buoyancy of a surface-based parcel,
::::::
which

:::
we

:::::
found

::
as

:::
the

:::
first

::::::
height

:::::
index

::
at

::::
each

::::
time

::::::
where

:::
the

:::::::
potential

:::::::::::
temperature

:::
(θ)

:
is
::

a
:::::
value

:
δ
::::::
greater

::::
than

:::
the

::::
first

::::::
height

::::
level

::
at

::::
that

::::
time,

::::::
where

::::
delta

::
is

:::::
0.5cp. However, method 1 was

::::::
derived

:::::
from the slab-averaged

:::::
output

::::
from

::::
the

::::
LES,

:::::::
yielding

:
zi at each

time t (i.e., over the entire model domain), method 2 was the instantaneous zi value for the selected column c (i.e., mimicking

an instantaneous lidar observation) at time t, and method 3 used a
:::
third

:::::
order

:
Savitzky-Golay filter with a 1 h window to80

temporally average zi at that selected column c around time t. These will be denoted by <zi(t)>, zc,i(t), and zc,i(t) respectively.

:::
All

::::
three

::
of

:::::
these

::::
were

:::::::
derived

::
as

:::
the

::::
level

::
of

::::::
neutral

:::::::::
buoyancy,

:::::
where

:::
the

::
θ
::::
used

:::
for

::::::
<zi(t)>::::

was
::::
from

:::
the

::::::::::::
slab-averaged

::::
LES

::::::
output,

::
for

:::::
zc,i(t)::

it
::::
was

:::
the

:::::::::::
instantaneous

::::
theta

:::::
from

::
an

:::::::::
individual

:::::::
column,

:::
and

:::::
zc,i(t)::

is
:::
the

:::::::::
temporally

::::::::
averaged

:::::
zc,i(t).

For this work, we computed time-height cross-sections of varianceand skewness
::::
cross

:::::::
sections

:::
of

::::::::
variance,

::::::::
skewness,

::::
and

::::::
kurtosis

:
of water vapor mixing ratio (q) from the LES output using three approaches: (a) using spatial statistics at each height85

level, which served as the truth dataset, (b) the baseline approach for a single column wherein the statistics were computed on

a fixed z grid, and (c) the new approach for a single column where the statistics were computed on a normalized ẑ grid using

zc,i(t), after which the moments were interpolated back to the regular z grid for comparison. We computed the variance and

skewness at each level in the z or ẑ grid by first extracting out the time series at that level for the time period being analyzed

and detrending it. The variance is then computed as90

Var(q) =
1
N
Σ(q – q)2 (1)

the skewness as

Skew(q) =
Σ(q – q)3

(N – 1)(Var(q))
3
2

(2)

and the kurtosis as
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Kurt(q) =
Σ(q – q)4

(N – 1)(Var(q))2 (3)95

where N is the number of points in the analysis window.

Note that we did not use the L-2000 technique here, as we did not attempt to simulate a true lidar observation by superim-

posing any random error. The primary purpose of this study is to demonstrate that using the normalized ẑ grid provides more

accurate measures of the varianceand skewness
:
,
::::::::
skewness,

::::
and

:::::::
kurtosis than using the regular z grid, even though the former

includes a contribution from the interpolation error that was introduced by putting the data on the ẑ grid.
::::
Since

:::
the

::̂
z

:::
grid

::
is
::
a100

::::
much

:::::
finer

::::::::
resolution

::::
than

:::
the

::::::
regular

::::::
height

::::
grid,

:::
this

:::::::::::
interpolation

::::
error

::
is
:::::::::
extremely

:::::
small.

2.1 Results

3
::::::
Results

::
In

::::
each

::
of

:::
the

:::::::::
following

::::::
contour

:::::::
figures,

::::
data

:::::
above

:::
1.2

::
zi:::

has
:::::
been

::::::
masked

:::
so

:::
that

:::
we

::::
can

:::::
focus

::
on

:::
the

:::
top

:::
of

:::
the

::::::::
boundary

::::
layer

:::
and

::::::
below.

:::::::::::
Additionally,

:::::::
sunrise,

:::::
noon,

:::
and

:::::
sunset

:::::
times

:::
are

::::::
shown

::::
with

::::::
dashed

::::
lines

:::
on

:::
the

::::::
figures. A comparison of the105

q variance from the three calculation methods is shown in Figure 2. The slab value results (left) are
:::
the truth to which the other

two methods are compared. The slab values show that the variance is the highest at the top of the boundary layer from 1000

– 1730 CDT, after which it tapers off. Below the boundary layer top, the variance is much smaller. Both methods capture the

higher variance along the top of the boundary layer, but the normalized ẑ grid has less of a gap just before 1500 CDT while

the regular grid has a more significant gap there. This tells us that the normalized ẑ grid captures the variance better than the110

regular grid. Figure ?? shows the difference between the slab values and the regular grid (left) and the normalized ẑ grid (right).

These show that both
::::
Both methods are close to the slab values except for at 1230 CDT and 1500 UTC along the top of the

boundary layer.

The q skewness is compared in Figure 3. These figures clearly show that the normalized ẑ grid values are closer to the slab

values in both magnitude and shape. Again, turning our attention to the values at the top of the boundary layer from 1000 –115

1730 CDT, there is high skewness in a very thin layer. The regular grid underestimates the magnitude of the skewness here

and overestimates the size of the layer with those highest skewness values. At the surface, both methods show higher levels of

skewness than the slab at 1500 CDT and beyond. Figure ?? reiterates these points, showing that there is a greater difference

between the regular grid results than the normalized grid at the top of the boundary layer, while at the surface, the differences

are similar.120

In the case of water vapor
::::
latent

::::
heat

:
flux, the different grid methods must be applied to both q and w. The results for the flux

(q′w′) are shown in Figure 4. There are some clear differences between both grid methods and the slab values. The maximum

flux is significantly higher than the slab values, and the two methods do not capture the flux well before 1230 CDT, especially

in the middle of the boundary layer. The difference plots (Figure ??) show that both methods match with the slab values in the

early morning and in the late afternoon, but not as much from 1000-1730 CDT, except for right along the top of the boundary125

layer, where it is very close to the slab values.
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To better quantify the differences between these two methods and the slab values, Figures 5-7 show line plots of the variance

(Figure 5), skewness (Figure 6), and water vapor
:::::
latent

::::
heat

:
flux (Figure 7) at ninety percent of the boundary layer (a), and

top of the boundary layer (b), along with their respective root mean square errors (RMSE) calculated over the time window of

800 – 1800 CDT.
::::
The

::::::
RMSE

:
is
:::::::::
calculated

:::::
based

:::
on

:::
the

::::::::
difference

:::::::
between

:::::
each

:::
grid

:::::::
method

:::
and

:::
the

::::
slab

::::::
values.

:
We see that130

for the variance (Figure 5), and at both depths, the normalized ẑ grid RMSE value is lower than the regular grid RMSE value,

which shows that the normalized ẑ grid method better captures the variance towards the top of the boundary layer than the

regular grid method does. For the skewness (Figure 6), at 90% of the boundary layer (Figure 6a) and the top of the boundary

layer (Figure 6b), the normalized grid method is significantly better than the regular grid method. Finally, looking at the flux

(Figure 7), the methods are almost the same
:̂
z
:::
grid

:::::::
method

:::::
yields

:::::::
slightly

::::::
smaller

::::::
RMSE

::::::
values at 90% of the boundary layer135

(Figure 7a), and the normalized ẑ grid method is better at the top of the boundary layer (Figure 7b).

We extended these methods to the case of the fourth moment, kurtosis, and calculated the variance, skewness, and kurtosis

of vertical velocity (w). Tables 1 -?? compare
::::
Table

::
1

::::
A-C

::::::::
compares

:
the RMSE values of the regular and normalized ẑ grid

methods for calculating variance, skewness, and kurtosis of q and w as well as the temperature
::::::
sensible

:
(θ′w′) and moisture

::::
latent

::::
heat

:
fluxes (q′w′) at various heights throughout the boundary layer (0.75zi, 0.9zi, and zi)In these tables, the values that140

are lower by the standard error of the two or more are boldedto show the better value
:
.
::
In

:::
this

:::::
table,

:::
the

::::
grid

:::::::
method

::::
with

:::
the

:::::
lower

:::::::
standard

::::
error

:::
for

:
a
:::::
given

:::::::
variable

::
is

::::::
bolded. We found that at 0.5zi, neither grid method stood out as better as the RMSE

values were either effectively the same or the values were better for an equal number of calculations, so we turn our attention to

heights closer to the boundary layer depth. At 0.75zi (Table 1
:
A), the normalized ẑ grid method is better for every calculation

except q variance and q kurtosis, where the regular grid method is better. For 0.9zi (Table ??
:
1
::
B), the normalized ẑ grid method145

is better in all cases except w skewness
:::::::
variance, where the methods are the same

::::
yield

:::
the

:::::
same

::::::
RMSE. Finally, at the top

of the boundary layer (Table ??
:
1

:
C), the normalized ẑ grid method is better in all casesexcept q variance, where the methods

are the same. At every height, the normalized ẑ grid method was better for q skewness
:
,
::
w

:::::::
kurtosis,

::::
and

::::
both

:::::
fluxes. At depths

closer to the boundary layer depth, the importance of the normalized ẑ grid method for more accurate calculations becomes

increasingly clear.150

Time-height cross-section of the difference of the q variance units of (gkg–1)2: Left - (panel 2b) minus (panel 2a) and right

- (panel 2c) minus (panel 2a)

Time-height cross-section of the difference of the q skewness unitless: Left - (panel 4b) minus (panel 4a), and right - (panel

4c) minus (panel 4a)

Time-height cross-section of the difference of the q flux (q′w′) units of (gkg–1)(ms–1)–1: Left - (panel 6b) minus (panel 6a)155

and Right - (panel 6c) minus (panel 6a)
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Figure 2. Time-height cross sections of q variance [units of (gkg–1)2
::::::
(gkg–1)2], computed from slab values at each height (a), on a regular z

grid (b) and on the normalized ẑ grid (c). Both (b) and (c) are averaged over a 1-h period centered on each 30-min.
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Figure 3. Time-height cross sections of q skewness [unitless], computed from slab values at each height (a), on a regular z grid (b) and on

the normalized ẑ grid (c). Both (b) and (c) are averaged over a 1-h period centered on each 30-min.

3.0.1 Discussion

4
:::::::::
Discussion

The normalized ẑ grid more accurately captures the q and w variance, skewness, kurtosis and temperature and moisture fluxes,

especially at heights approaching the top of the boundary layer. By accounting for changes in the boundary layer over time,160

this approach allows for a more accurate analysis of turbulence characteristics, particularly while the CBL is actively growing.
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Figure 4. Time-height cross sections of q
::::
latent

:::
heat

:
flux (q′w′) [units of (gkg–1)(ms–1)–1

:::::::::::
(gkg–1)(ms–1)], computed from slab values at each

height every 30 minutes (a), on a regular z grid (b) and on the normalized ẑ grid (c). Both (b) and (c) are averaged over a 1-h period centered

on each 30-min.

6 12 18
Hour (CDT)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
ria

nc
e 

(q
′)

a)

90% Boundary Layer Height
Slab
Regular: RMSE = 0.301
Normalized: RMSE = 0.259

6 12 18
Hour (CDT)

0

1

2

3

4

Va
ria

nc
e 

(q
′)

b)

Top of the Boundary Layer
Slab
Regular: RMSE = 0.403
Normalized: RMSE = 0.391
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:::::::
(gkg–1)2] at 90% of the boundary layer (a), and at the top of the boundary

layer (b) for the three computation methods: slab (black), regular grid (blue), and normalized ẑ grid (orange), along with their respective

Root Mean Square Error (calculated over the time period of 800-1800 CDT) with respect to the slab value results.
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Figure 6. Line plot comparison of q skewness [unitless] at 90% of the boundary layer (a) and at the top of the boundary layer (b) for the

three computation methods: slab (black), regular grid (blue), and normalized ẑ grid (orange), along with their respective Root Mean Square

Error with respect to the slab value results.

This was particularly true for skewness, suggesting that higher order moments would benefit more from this new approach.

These results are consistent across multiple analysis days (not shown).

Previous work that only considers a regular grid could be reanalyzed to be more accurate with this method. In the future,

this method can be used for more accurate lidar analysis of the CBL turbulent statistics during the late morning transition. A165

larger time window could be used, since the changes in the boundary layer are already considered in the analysis, which will

reduce the sampling error
:::::::::
uncertainty relative to previous studies done on a regular grid.

Further refinement is still necessary to determine optimal analysis periods guided by L-1994. Additionally, this method also

would need to be adjusted for extremely rapid changes in zi, such as during the evening transition. In cases where neither

grid accurately captures the slab values, we must remember the spatial variability that a single column will never be able to170

capture (i.e., sampling errors)
:::::::
properly

::::::
capture

:::
the

::::::
spatial

:::::::::
variability

:::::::
because

::
of

::::::::
sampling

:::::::::::
uncertainties. It is clear, especially

in the variance and flux
:
q
::::::::

variance
:::
and

::::::
Latent

::::
Heat

::::
Flux

::::::::::
time-height

:::::
cross

:::::::
sections around 1230 CDT, that the single column

is experiencing an updraft that is not representative of the entire domain. Further work must be done to reduce the impact of

spatial variability.
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Figure 7. Line plot comparison of q
::::
latent

::::
heat flux (q′w′) [units of (gkg–1)(ms–1)–1

::::::::::
(gkg–1)(ms–1)] at 90% of the boundary layer (a) and at

the top of the boundary layer (b) for the three computation methods: slab (black), regular grid (blue), and normalized ẑ grid (orange), along

with their respective Root Mean Square Error with respect to the slab value results.

5 Conclusions175

This work shows that using a normalized ẑ grid to calculate q and w variance, skewness, kurtosis and temperature and moisture

fluxes allows for a better representation of higher order moments, especially at the top of the boundary layer, when compared

to the higher order moments
:::
and

::::::
fluxes derived from the values over the entire domain. By transforming data to a normalized

grid, we overcome limitations of the regular grid, particularly during the rapid growth of the CBL. This results in more accurate

moments and is more impactful for higher-order (e.g., 3rd) moments. This opens the ability to describe these moments more180

accurately in a growing CBL, which will lead to improvements in modeling mixing in future climate and weather models.

In forthcoming work, we will discuss methods for handling spatial variability by determining optimum spacing and number

of columns to represent a larger domain more accurately. Additionally, work needs to be done to determine optimum analysis

periods and to refine the method for cases where the boundary layer depth is rapidly changing (e.g., during the evening

transition).185

Code and data availability. Code will be uploaded to a GitHub repository before the final review.
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Table 1. Comparison of the Root Mean Squared Errors for the regular z grid and normalized ẑ grid methods, calculated over the time window

of 800 – 1800 CDT, at 0.75zi:, ::::
0.9zi,:::

and
::
zi. Bolded values indicate markedly smaller RMSE value

::::
values

::::::
smaller than the other height grid

::
by

::
the

:::::::
standard

::::
error

::
of

:::
the

:::
two.

:
A.

::::
0.75

::
zi

Moment RMSE Regular z Grid RMSE Normalized ẑ Grid

Variance (q′)[(gkg–1)2]
::::::::::
(q′)[(gkg–1)2]

:
0.097 0.103

Skewness (q′)[unitless] 0.560 0.451

Kurtosis (q′)[unitless] 1.189 1.832

Variance (w′)[(ms–1)2]
::::::::::
(w′)[(ms–1)2] 0.261 0.254

Skewness (w′)[unitless] 0.517 0.508

Kurtosis (w′)[unitless] 2.014 1.923

Water Vapor Flux (q′w′)[(gkg–1)(ms–1)–1]
:::::
Latent

::::
Heat

::::
Flux

::::::::::::::::
(q′w′)[(gkg–1)(ms–1)]

:
0.078 0.076

Temperature Flux (θ′w′)[(Km)s–1]
::::::
Sensible

::::
Heat

::::
Flux

::::::::::::::
(θ′w′)[(K)(ms–1)] 0.021 0.018

Same as Table 1 but at 0.9zi ::
B.

:::
0.9

:
zi

Moment RMSE Regular z Grid RMSE Normalized ẑ Grid

Variance (q′)[(gkg–1)2]
::::::::::
(q′)[(gkg–1)2]

:
0.301 0.259

Skewness (q′)[unitless] 0.547 0.379

Kurtosis (q′)[unitless] 1.222 0.752

Variance (w′)[(ms–1)2]
::::::::::
(w′)[(ms–1)2] 0.179 0.179

Skewness (w′)[unitless] 0.639 0.598

Kurtosis (w′)[unitless] 2.537 2.436

Water Vapor Flux (q′w′)[(gkg–1)(ms–1)–1]
:::::
Latent

::::
Heat

::::
Flux

::::::::::::::::
(q′w′)[(gkg–1)(ms–1)]

:
0.119 0.112

Temperature Flux (θ′w′)[(Km)s–1]
::::::
Sensible

::::
Heat

::::
Flux

::::::::::::::
(θ′w′)[(K)(ms–1)] 0.046 0.044

Same as Table 1 but at zi ::
C.

::
zi

Moment RMSE Regular z Grid RMSE Normalized ẑ Grid

Variance (q′)[(gkg–1)2]
::::::::::
(q′)[(gkg–1)2]

:
0.403 0.403

::::
0.391

Skewness (q′)[unitless] 1.124 0.623

Kurtosis (q′)[unitless] 4.124 3.094

Variance (w′)[(ms–1)2]
::::::::::
(w′)[(ms–1)2] 0.205 0.202

Skewness (w′)[unitless] 0.525 0.473

Kurtosis (w′)[unitless] 2.644 2.466

Water Vapor Flux (q′w′)[(gkg–1)(ms–1)–1]
:::::
Latent

::::
Heat

::::
Flux

::::::::::::::::
(q′w′)[(gkg–1)(ms–1)]

:
0.095 0.087

Temperature Flux (θ′w′)[(Km)s–1]
::::::
Sensible

::::
Heat

::::
Flux

::::::::::::::
(θ′w′)[(K)(ms–1)] 0.047 0.046
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