Preprints
https://doi.org/10.5194/egusphere-2024-860
https://doi.org/10.5194/egusphere-2024-860
11 Apr 2024
 | 11 Apr 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau

Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen

Abstract. The planetary boundary layer (PBL) over the Tibetan Plateau (TP) exerts a significant influence on regional and global climate, while its vertical structures of turbulence and evolution features remain poorly understood, largely due to the scarcity of observation. This study examines the vertical profile and daytime variation of turbulence dissipation rate (ε) in the PBL over the TP using the high-resolution (6 min and 120 m) measurements from the radar wind profiler (RWP) network, combined with the hourly data from the ERA5 reanalysis. Observational analyses show that the magnitude of ε below 3 km under all-sky conditions exhibits large spatial discrepancy over the six RWP sites over the TP. Particularly, the values of ε at Minfeng and Jiuquan over the northern TP and Dingri over the southern TP are roughly an order of magnitude greater than those at Lijiang, Ganzi and Hongyuan over the eastern TP. This could be partially attributed to the difference of land cover across the six RWP sites. In terms of the diurnal variation, ε rapidly intensifies from 0900 local standard time (LST) to 1400 LST, and then gradually levels off in the late afternoon. Under clear-sky conditions, both ε and planetary boundary layer height (zi) are greater, compared with cloudy-sky conditions. This reveals that clouds would suppress the turbulence development and deduce zi. In the lower PBL (0.2<z / zi <0.5, where z is the height above ground level), the dominant influential factor for the development of turbulence is the surface-air temperature difference (Ts Ta). By comparison, in the upper PBL (0.6< z / zi <1.0), both the and vertical wind shear (VWS) affect the development of turbulence. Above the PBL (1.0< z / zi <2.0), the shear production resulting from VWS dominates the variation of turbulence. Under cloudy-sky conditions, clouds are found to decrease the surface total solar radiation, thereby reducing Ts Ta and surface sensible heat flux. This weakened sensible heat flux tends to inhibit the turbulent motion within PBL especially in the lower PBL and decrease the growth rate of zi. On the other hand, the strong VWS induced by clouds enhances the turbulence above the PBL. The findings obtained here underscore the importance of RWP network in revealing the fine-scale structures of the PBL over the TP and gaining new insight into the PBL evolution.

Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen

Status: open (until 23 May 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-860', Anonymous Referee #1, 19 Apr 2024 reply
  • RC2: 'Comment on egusphere-2024-860', Gerrit de Leeuw, 29 Apr 2024 reply
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen

Viewed

Total article views: 161 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
125 27 9 161 6 4
  • HTML: 125
  • PDF: 27
  • XML: 9
  • Total: 161
  • BibTeX: 6
  • EndNote: 4
Views and downloads (calculated since 11 Apr 2024)
Cumulative views and downloads (calculated since 11 Apr 2024)

Viewed (geographical distribution)

Total article views: 157 (including HTML, PDF, and XML) Thereof 157 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Apr 2024
Download
Short summary
The turbulence in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) remains unclear. Here we elucidate the vertical profile and temporal variation of the turbulence dissipation rate in the PBL over the TP based on the radar wind profiler (RWP) network. To the best of our knowledge, this is the first time that the turbulence profile over the whole TP is revealed. Furthermore, the possible mechanisms of clouds on the PBL turbulence structure are investigated.