Preprints
https://doi.org/10.5194/egusphere-2024-701
https://doi.org/10.5194/egusphere-2024-701
10 Apr 2024
 | 10 Apr 2024

Pollution affects Arabian and Saharan dust optical properties in the Eastern Mediterranean

Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl

Abstract. Uncertainties in the mineral dust’s direct radiative effect arise from the variability in its optical properties. The optical properties can also be influenced by mixing processes with anthropogenic aerosols, such as black carbon or fine particles (called "pollution" in this study). We aimed to investigate the effect of mixing pollution with mineral dust aerosols from different source regions on the intensive aerosol optical properties. Thus, the Ångström exponents of scattering and absorption (i.e., their wavelength dependence), the single scattering albedo, and the asymmetry parameter were determined from direct optical measurements performed during the A-LIFE aircraft field experiment over the Eastern Mediterranean. This location provided access to Arabian and Saharan dust layers mixed with pollution. Our findings indicated significant changes in all the intensive aerosol optical properties with increasing pollution content within mineral dust layers. Interestingly, the differences between Arabian and Saharan dust’s intensive aerosol optical properties were negligible. We discussed the implications of these results for identifying mineral dust events and for their direct radiative effect. First, the mixing with pollution masked the mineral dust signal, suggesting that caution is needed when using the Ångström exponents for identifying mineral dust events. However, the Ångström exponents can help estimate the amount of pollution once a mineral dust event is confirmed. Second, our measurements of the asymmetry parameter and single scattering albedo changed from pure to polluted mineral dust layers (e.g., at 525 nm, the median values decreased from 0.67 to 0.56 and from 0.96 to 0.89, respectively). These changes have 15 opposing effects on the short-wave direct radiative effect efficiency (i.e., the direct radiative effect per unit of aerosol optical depth) and may partly cancel out each other. Nevertheless, the impact of mixing with pollution on the mineral dust’s direct radiative effect efficiency can differ depending on the surface albedo. In conclusion, accurate quantification of the pollution content within mineral dust layers is crucial. The pollution significantly impacts mineral dust event identification, its optical properties, and the local direct radiative effect.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-701', Darrel Baumgardner, 26 May 2024
  • RC2: 'Comment on egusphere-2024-701', François Dulac, 14 Jun 2024
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl

Viewed

Total article views: 493 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
356 112 25 493 53 21 19
  • HTML: 356
  • PDF: 112
  • XML: 25
  • Total: 493
  • Supplement: 53
  • BibTeX: 21
  • EndNote: 19
Views and downloads (calculated since 10 Apr 2024)
Cumulative views and downloads (calculated since 10 Apr 2024)

Viewed (geographical distribution)

Total article views: 500 (including HTML, PDF, and XML) Thereof 500 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 12 Sep 2024
Download
Short summary
The A-LIFE aircraft field experiment was carried out in the Eastern Mediterranean in 2017. Using A-LIFE data, we studied the change in mineral dust optical properties due to mixing with anthropogenic aerosols. We found that increasing pollution affects dust optical properties which has implications for identifying dust events and understanding their climate effects. We also show that optical properties of Saharan and Arabian dust are similar when comparing cases with equal pollution content.