Preprints
https://doi.org/10.5194/egusphere-2024-683
https://doi.org/10.5194/egusphere-2024-683
14 May 2024
 | 14 May 2024

Overdeepening or tunnel valley of the Aare glacier on the northern margin of the European Alps: Basins, riegels, and slot canyons

Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk

Abstract. This work summarizes the results of an interdisciplinary project where we aimed to explore the origin of overdeepenings or tunnel valleys through a combination of a gravimetry survey, drillings, dating and a synthesis of previously published work. To this end, we focused on the Bern area, Switzerland, situated on the northern margin of the European Alps. In this region, multiple advances of piedmont glaciers during the Quaternary glaciations resulted in the carving of the main overdeepening of the Aare River valley (referred to as Aare main overdeepening). This bedrock depression is tens of km long and up to several hundreds of meters to a few kilometers wide. We found that in the Bern area, this main overdeepening is made up of two >200 m-deep troughs that are separated by a c. 5 km-long and up to 150 m-high transverse rocky ridge, interpreted as a riegel. The basins and the riegel are overlain by a >200 m- and 100 m-thick succession of Quaternary sediments, respectively. The bedrock itself is made up of a Late Oligocene to Early Miocene suite of consolidated clastic deposits, which are part of the Molasse foreland basin, whereas the Quaternary suite comprises a middle Pleistocene to Holocene succession of glacio-lacustrine gravel, sand and mud. A synthesis of published gravimetry data revealed that the upstream stoss side of the bedrock riegel is c. 50 % flatter than the downstream lee side. In addition, information from >100 deep drillings reaching depths >50 m suggests that the bedrock riegel is dissected by an anastomosing network of slot canyons. We propose that these canyons established the hydrological connection between the upstream and downstream basins during their formation. Based on published modelling results, we interpret that the riegels and canyons were formed through incision of subglacial meltwater during a glacier’s decay state, when large volumes of meltwater were released. Such a situation has repeatedly occurred since the Middle Pleistocene Transition approximately 800 ka ago, when large and erosive piedmont glaciers began to advance far into the foreland. This resulted in the deep carving of the inner-Alpine valleys, and additionally in the formation of overdeepenings on the plateau on the northern margin of the Alps.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

11 Dec 2024
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024,https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-683', Anonymous Referee #1, 05 Jun 2024
    • AC1: 'Reply on RC1', Fritz Schlunegger, 26 Jun 2024
  • RC2: 'Comment on egusphere-2024-683', Anonymous Referee #2, 26 Jul 2024
    • AC2: 'Reply on RC2', Fritz Schlunegger, 31 Jul 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-683', Anonymous Referee #1, 05 Jun 2024
    • AC1: 'Reply on RC1', Fritz Schlunegger, 26 Jun 2024
  • RC2: 'Comment on egusphere-2024-683', Anonymous Referee #2, 26 Jul 2024
    • AC2: 'Reply on RC2', Fritz Schlunegger, 31 Jul 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Fritz Schlunegger on behalf of the Authors (17 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (05 Oct 2024) by Wolfgang Schwanghart
RR by Anonymous Referee #1 (15 Oct 2024)
ED: Publish subject to minor revisions (review by editor) (17 Oct 2024) by Wolfgang Schwanghart
AR by Fritz Schlunegger on behalf of the Authors (23 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (23 Oct 2024) by Wolfgang Schwanghart
ED: Publish as is (23 Oct 2024) by Wolfgang Schwanghart (Editor)
AR by Fritz Schlunegger on behalf of the Authors (24 Oct 2024)

Journal article(s) based on this preprint

11 Dec 2024
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024,https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk

Viewed

Total article views: 595 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
401 150 44 595 27 13
  • HTML: 401
  • PDF: 150
  • XML: 44
  • Total: 595
  • BibTeX: 27
  • EndNote: 13
Views and downloads (calculated since 14 May 2024)
Cumulative views and downloads (calculated since 14 May 2024)

Viewed (geographical distribution)

Total article views: 577 (including HTML, PDF, and XML) Thereof 577 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 11 Dec 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.