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Abstract 18 
This work summarizes the results of an interdisciplinary project where we aimed to explore the origin 19 
of overdeepenings or tunnel valleys through a combination of a gravimetry survey, drillings, dating and 20 

a synthesis of previously published work. To this end, we focused on the Bern area, Switzerland, 21 
situated on the northern margin of the European Alps. In this region, multiple advances of piedmont 22 

glaciers during the Quaternary glaciations resulted in the carving of the main overdeepening of the Aare 23 
River valley (referred to as Aare main overdeepening). This bedrock depression is tens of km long and 24 
up to several hundreds of meters to a few kilometers wide. We found that in the Bern area, this main 25 

overdeepening is made up of two >200 m-deep troughs that are separated by a c. 5 km-long and up to 26 
150 m-high transverse rocky ridge, interpreted as a riegel. The basins and the riegel are overlain by a 27 

>200 m- and 100 m-thick succession of Quaternary sediments, respectively. The bedrock itself is made 28 
up of a Late Oligocene to Early Miocene suite of consolidated clastic deposits, which are part of the 29 
Molasse foreland basin, whereas the Quaternary suite comprises a middle Pleistocene to Holocene 30 

succession of glacio-lacustrine gravel, sand and mud. A synthesis of published gravimetry data revealed 31 
that the upstream stoss side of the bedrock riegel is c. 50% flatter than the downstream lee side. In 32 

addition, information from >100 deep drillings reaching depths >50 m suggests that the bedrock riegel 33 
is dissected by an anastomosing network of slot canyons. We propose that these canyons established 34 
the hydrological connection between the upstream and downstream basins during their formation. 35 

Based on published modelling results, we interpret that the riegels and canyons were formed through 36 
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incision of subglacial meltwater during a glacier’s decay state, when large volumes of meltwater were 37 
released. Such a situation has repeatedly occurred since the Middle Pleistocene Transition 38 

approximately 800 ka ago, when large and erosive piedmont glaciers began to advance far into the 39 
foreland. This resulted in the deep carving of the inner-Alpine valleys, and additionally in the formation 40 

of overdeepenings on the plateau on the northern margin of the Alps. 41 
 42 
1 Introduction 43 

Overdeepenings, or tunnel valleys (e.g., Jørgensen and Sandersen, 2006; Dürst Stucki et al., 2010), are 44 
bedrock depressions below the current fluvial base-level (Fischer and Häberli, 2012). The downstream 45 

closures of these basins have adverse slopes that generally dip in the upstream direction (Häberli et al., 46 
2016). Because bedrock depressions with such characteristics are commonly found in previously 47 
glaciated areas (Figure 1), their formation has been interpreted as resulting from the erosional work of 48 

glaciers with support by subglacial meltwater (Wrigth, 1973; Herman and Braun, 2008; Egholm et al., 49 
2009; Kehew et al., 2012; Patton et al., 2016; Liebl et al., 2023; and many others). Overdeepenings have 50 
been reported for the Quaternary from beneath the Greenland and Antarctic glaciers (Ross et al., 2011; 51 

Patton et al., 2016), the North Sea (Moreau et al., 2012, Lohrberg et al., 2022), North America (Wright, 52 
1973; Lloyd et al., 2023) and northern Europe including Scandinavia (Clark and Walder, 1994; 53 

Piotrowski, 1997; Kron et al., 2009). In addition, numerous Paleozoic successions entailing glaciogenic 54 
paleovalleys were also described (e.g. Douillet et al., 2012; Dietrich et al., 2021). Such erosional troughs 55 
have particularly been identified in the European Alps (Preusser et al., 2010), where >200 m-deep and 56 

several km-long bedrock depressions beneath the modern base-level occur in the Alpine valleys as well 57 
as on foreland plateaus on either side of this mountain belt (Preusser et al., 2010; Dürst Stucki and 58 

Schlunegger, 2013; Magrani et al., 2020). Geophysical surveys (e.g., Rosselli and Raymond, 2003; 59 
Reitner et al., 2010; Stewart and Lonergan, 2011; Stewart et al., 2013; Perrouty et al., 2015; Burschil et 60 
al., 2018; 2019; Ottesen et al., 2020) in combination with drillings (Jordan, 2010; Dürst Stucki et al., 61 

2010; Büchi et al., 2017; 2018; Gegg et al., 2021; Bandou et al., 2022; 2023; Anselmetti et al., 2022; 62 
Schwenk et al., 2022a, b; Gegg and Preusser, 2023; Schaller et al., 2023) disclosed that such 63 

overdeepenings can be several kilometers wide and tens of kilometers long and that they are generally 64 
made up of individual sub-basins separated by bedrock swells, or riegels (Cook and Swift, 2012). 65 
Bedrock swells or riegels that separate bedrock depressions have also been reported from modern 66 

landscapes. In this context, a riegel is a rock wall, which is oriented across a previous glacier’s flow 67 
direction. 68 

An ensemble consisting of a riegel separating upstream and downstream basins has been considered as 69 
a classical feature of a landscape, which was repeatedly sculpted by glaciers during the past glaciations 70 
(Brocklehurst and Whipple, 2002; Brocklehurst et al., 2008; Cook and Swift, 2012; Steinemann et al., 71 

2021). Observations from modern landscapes (see Figure 2 for examples in the Swiss Alps) have 72 
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additionally shown that such bedrock swells or riegels may be cut by slot canyons or inner gorges 73 
(Montgomery and Korup, 2011; Steinemann et al., 2021), establishing a hydrological link between the 74 

upstream and downstream basins. These features were used as key information for invoking dissection 75 
by meltwater as an important erosional mechanism (Carter and Anderson, 2006; Steinemann et al., 76 

2021). Although bedrock swells or riegels were reported as common features in overdeepenings (Gegg 77 
and Preusser, 2023), the occurrence of inner gorges or slot canyons (Figure 1) have only recently been 78 
disclosed (Bandou et al., 2023). It is the scope of this work to document such structures in an 79 

overdeepening and to discuss their importance for our understanding of how such depressions were 80 
formed. 81 

 82 

 83 

Figure 1: Architecture of a landscape sculpted by piedmont glaciers during glaciations. a) Situation 
immediately following a full glacial period during which a piedmont glacier, which extended far 
into the foreland, started to melt. As a result, large volumes of meltwater are produced in the 
ablation zone close to the glacier’s tongue. This meltwater has the potential to contribute to the 
erosional downwearing of the bedrock, and it can cause the incision of canyons into bedrock 
riegels, which separate two overdeepened basins. b) During interglacial time periods, the 
piedmont glaciers disappear, and small ice caps may be preserved in the higher parts of a mountain 
belt. During this time, the overdeepened basin will be filled by lacustrine sediments and will 
eventually host a lake. Modified after Schlunegger and Garefalakis (2023). 
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Here, we summarize the results of an interdisciplinary project where we aimed at exploring the origin 84 
of tunnel valleys or overdeepenings using a combination of data collected through a gravimetry survey 85 

(Bandou et al., 2022, 2023), drillings (Reber and Schlunegger, 2016; Schwenk et al., 2022a, b) and 86 
dating (Schläfli et al., 2021; Schwenk et al., 2022a). We focus our study on the Bern area situated on 87 

the northern margin of the European Alps (Figure 3a). For this region, we draw a map of the bedrock 88 
structure combining the results of a gravimetry survey in the region (Bandou et al., 2023) with 89 
information obtained through drilling. This map shows that an overdeepened trough or a tunnel valley 90 

system, referred to as the Aare main overdeepening (Schwenk et al., 2022), is made up of two basins 91 
separated by a bedrock riegel, which itself is cut by one or multiple slot canyons. This structure has a 92 

similar geometry as the examples reported from the Alpine valleys, which points to similar processes 93 
resulting in their formation. 94 
 95 

2 Riegels and slot canyons in the Alpine valleys, and overdeepenings in the Bern area 96 
Bedrock swells between neighboring basins are common features in previously glaciated landscapes 97 
and have been reported from various regions around the globe (Anderson et al., 2006; Alley, 2019). 98 

They are particularly found in the European Alps (see Figure 2, for a few examples), and they have also 99 
been detected underneath active glaciers (Feigel et al., 2018; Nishiyama et al., 2019). In the Alps, most 100 

of the bedrock swells occur at the base of valleys (Figure 2) and are dissected by inner gorges or slot 101 
canyons that connect the upstream with the downstream basin (Hantke and Scheidegger, 1973; Valla et 102 
al., 2009; Montgomery and Korup, 2011). In addition, the Alpine bedrock riegels have a geometry 103 

where the upstream stoss side is flatter and has thus a lower dip angle than the downstream lee side. 104 
This is particularly the case for the swell in (Figure 2): the Aare valley (Figure 2a; dip of stoss side and 105 

lee sides <5° and >6°, respectively; Hantke and Scheidegger, 1973), the Trift valley (Figure 2b; c. 30° 106 
versus 40°; Steinemann et al., 2021), the Maggia valley (Figure 2e; 6° versus 40°), and the downstream 107 
end of the Urbach valley (Figure 2f; c. 20° versus 6°). In this work, we will document that the 108 

overdeepening beneath the city of Bern shares the same geometric properties as the ensemble of bedrock 109 
riegels and slot canyons in the Alpine valleys. 110 

The target overdeepening near Bern was sculpted by the Aare piedmont glacier with sources in the 111 
Central European Alps. From there, the Aare glacier flowed onto the Swiss Plateau over a distance of 112 
>20 km, and it merged with the Valais glacier north of Bern, at least during the Last Glacial Maximum 113 

(LGM) c. 20 ka ago (Figure 3b). Upstream of the city area of Bern, two bedrock depressions, referred 114 
to as the Gürbe tributary channel and the Aare main overdeepening (Figure 3c), form prominent basins 115 

that are between c. 150 (Gürbe trough; Geotest, 1995) and >250 m deep (Aare main trough, Kellerhals 116 
and Häfeli, 1984) and several kilometers wide (Bandou et al., 2022). Downstream of the city of Bern, 117 
the Aare main overdeepening splits into several distributary branches. Among these, the Bümpliz 118 

channel (‘Bü’ in Figure 3c) is the most prominent one with a depth >200 m (Schwenk et al., 2022a, b). 119 

https://doi.org/10.5194/egusphere-2024-683
Preprint. Discussion started: 14 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 5 

 120 

 121 

Figure 2: Hillshade 2 m-SwissAlti3D DEM (© swisstopo) illustrating examples in the Alpine valleys where 
bedrock riegels separate overdeepened basins situated farther upstream and downstream. The 
coordinates refer to the Swiss coordinate system. 
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The other depressions such as the Zollikofen trough are shallower and reach a depth of <150 m (Reber 122 
and Schlunegger, 2016). The study region also hosts the Meikirch overdeepening (labelled as ‘Me’ on 123 

Figure 3c), a nearly 200 m-deep trough (Dürst Stucki et al., 2010; Dürst Stucki and Schlunegger, 2003), 124 
which appears to be isolated from the rest of the overdeepening system (Reber and Schlunegger, 2016).  125 

 126 

 127 
Because the area between the northern termination of the Aare main overdeepening and the Meikirch 128 

trough is made up of exposed bedrock (Gerber, 1927), a connection between both depressions was ruled 129 
out (Reber and Schlunegger, 2016). The Aare main overdeepening itself is the most prominent trough 130 
in the city area of Bern and has a maximum depth of nearly 250 m (Reber and Schlunegger, 2016). 131 

The bedrock in the region comprises an amalgamated suite of Early Miocene Upper Marine Molasse 132 
(UMM) sandstone beds south of Bern. Sedimentological analyses showed that these sediments were 133 

Figure 3: Local setting illustrating the a) Alpine arc (modified from Bandou et al., 2023) with latitudes and 
longitudes, b) the study area during the Last Glacial Maximum (LGM; map with isohypses of the 
glacier’s surfaces taken from Bini et al., 2009), and c) the surface geomorphology (2 m-
SwissAlti3D DEM © swisstopo) together with the orientation of the Aare main overdeepening, 
taken from Reber and Schlunegger (2016). The figure c) shows (i) the sections along which 
gravity data was collected (black lines; Bandou et al., 2022; 2023), and (ii) the sites (white circles) 
where sediments in drillings (Rehhag: Schwenk et al., 2022a, b; Meikirch: Welten, 1982; Preusser 
et al., 2005; Schläfli et al., 2021: Brunnenbohrung: Kellerhals and Häfeli, 1984; Zwahlen et al., 
2021) and exposures (Thalgut: Welten, 1982; 1988; Schlüchter, 1989; Preusser and Schlüchter, 
2004) were either dated with various techniques, or where existing ages were reconfirmed by a 
subsequent analysis. Me=Meikirch overdeepening; Bü=Bümpliz trough. The numbers along the 
figure margin refer to the Swiss coordinate system (CH1903+). 
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deposited in a shallow marine, mostly coastal environment (Garefalakis and Schlunegger, 2019). In the 134 
region north of Bern, the bedrock is made up of a Late Oligocene to Early Miocene suite of Lower 135 

Freshwater Molasse (LFM) sandstones and mudstones (Isenschmid, 2019). These sediments were 136 
originally deposited in a fluvial environment (Platt and Keller, 1992; Isenschmid, 2019). The contact 137 

between the UMM and the LFM gently dips towards the south (Isenschmid, 2019), with the 138 
consequence that south of Bern, the base of the Aare main overdeepening might consist of LFM 139 
deposits, while most of the upper part of the overdeepening is laterally bordered by bedrock of the 140 

UMM. 141 
 142 

3 Dataset and Methods 143 
3.1 Compilation of gravity data 144 
The bedrock topography underneath the city area of Bern was already reconstructed in 2010 and then 145 

updated in 2016 based on information retrieved from thousands of drillings that is available from the 146 
Geoportal of the Canton Bern (Dürst Stucki et al., 2010; Reber and Schlunegger, 2016). Whereas such 147 
information yielded highly resolved spatial information on the bedrock geometry, particularly on its 148 

shallower <50 m-deep part (Reber and Schlunegger, 2016), reconstructions of the details for the deeper 149 
and thus central part of the Aare main overdeepening have been thwarted because of a lack of drilling 150 

information at that time. Here, we benefit from the results of a recent gravity survey conducted in the 151 
city area of Bern and information of new drillings >50 m deep (Bandou et al., 2023; Figure 3c). In 152 
particular, Bandou et al. (2023) measured the Bouguer gravity anomalies along 10 sections (black lines 153 

in Figure 3c). The obtained values were then subtracted from the regional gravity field yielding a 154 
residual gravity anomaly value at each site where gravity data was collected. Note that the Quaternary 155 

deposits and thus the overdeepening fill has a lower bulk density than the Oligo-Miocene sediments 156 
forming the bedrock in the region (Schwenk et al., 2022a; Bandou et al., 2022). Therefore, the 157 
occurrence of Quaternary sediments overlying an overdeepened trough result in a negative residual 158 

gravity anomaly (Kissling and Schwendener, 1990). Accordingly, a larger bulk mass of Quaternary 159 
sediments yields a stronger (and thus a more negative residual anomaly) signal than a fill with less 160 

Quaternary material (Kissling and Schwendener, 1990; Bandou et al., 2022). Following this concept, 161 
we compiled the residual anomaly data from Bandou et al. (2023) for each gravity profile and drafted a 162 
contour map where each line displays the same residual anomaly value. This map (Figure 4a) was drawn 163 

by hand, thereby considering the a-priori information about the orientation of the Aare main 164 
overdeepening (Reber and Schlunegger, 2016).  165 

 166 
3.2 Estimating the general shape of the bedrock topography 167 
For a selection of 6 cross-sections along which the residual gravity anomalies were well constrained, 168 

Bandou et al. (2023) reconstructed the cross-sectional shape of the overdeepenings using a 3D gravity 169 
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software referred to as PRISMA (Bandou, 2023). This program uses multiple right-handed prisms to 170 
predict the gravity effect of a given structure underneath a point of interest. It bases on an analytical 171 

solution by Nagy (1966) and Banerjee and DasGupta (1977) and was conceptualized (Bandou, 2023) 172 
to model the general shape of an overdeepening fill. Upon applying this model, Bandou et al. (2023) 173 

particularly considered geophysical and geological a-priori information such as the residual gravity 174 
anomalies, the density contrasts between the bedrock and the Quaternary fill, the depth of bedrock 175 
encountered in drillings, and the already existing bedrock topography model by Reber and Schlunegger 176 

(2016). Here, we used the depth of the bedrock as unraveled upon applying the PRISMA routine 177 
(Bandou, 2023) to reconstruct the general course of the isohypses (i.e. the lines of constant elevation) 178 

of the bedrock underneath the city area of Bern (Figure 4b). Upon drawing this map, we considered that 179 
a trend towards less negative residual anomalies points towards a shallowing of the bedrock (Kissling 180 
and Schwendener, 1990; Bandou et al., 2023). 181 

 182 
3.3 Combining the results of the gravity survey with drilling data to reconstruct the details of the 183 

bedrock topography 184 

We used the existing bedrock topography map of Reber and Schlunegger (2016) as a basis where the 185 
isohypses were originally drawn every 10 meters, thereby using the information of thousands of 186 

drillings in the region. Because these drillings mainly penetrated the entire Quaternary sequence at the 187 
lateral margins of the Aare main overdeepening, the reconstruction of the shallower parts of the bedrock 188 
trough is precise. We updated this existing map with information about the general shape of the 189 

overdeepening retrieved through the gravity data by Bandou et al. (2023) (Figure 4), and we additionally 190 
considered the information of >100 drillings that were sunk >50 m deeply into the subsurface during 191 

the past years (Figure 5). Similar to Reber and Schlunegger (2016), we draw the isohypses by hand 192 
thereby inferring that changes in the direction of the contour lines and the depths of the bedrock were 193 
gradual. We finally combined the map displaying the geometry of the bedrock underneath the 194 

overdeepening with the elevation data offered by the 2 m-SwissAlti3D DEM (based on LIDAR data of 195 
swisstopo) to present the shape of the bedrock topography as shaded relief. We finally used this map as 196 

a basis to draw the cross-sections displayed in Figures 6 and 7. 197 
 198 
4 Results 199 

4.1 Patterns of residual gravity anomalies 200 
Based on the results of a gravity survey, Bandou et al. (2022; 2023) showed that the Quaternary fill of 201 

the Aare main overdeepening results in a residual gravity anomaly signal that ranges between c. -4.0 202 
and -0.5 mGal. In addition, they showed that the gravity signal of the Quaternary fill has a pattern with 203 
a distinct change from upstream to downstream. In particular, along the Gürbe-Aare transect (Figure 204 

3c), which also crosses a mountain ridge (Belpberg) made up of Molasse bedrock, the corresponding 205 
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maximum residual anomalies signal ranges from c. -2.9 mGal in the Gürbe valley to c. -4.1 mGal in the 206 
Aare valley (Bandou et al., 2022). Farther downstream, the signals of the overdeepening fill decreases,  207 

 208 

 209 

 210 

Figure 4: Residual gravity anomalies and inferred thicknesses of Quaternary sediments. a) The contour lines 
of the residual gravity signals (mGal) caused by the Quaternary fill of the Aare main 
overdeepening are mainly based on gravity surveys along 10 sections (red lines; Bandou et al., 
2023). Here, more negative values imply a greater gravity signal and thus a larger bulk mass of 
Quaternary sediments overlying the overdeepened trough (Kissling and Schwendener, 1990; 
Bandou et al., 2022). b) Spatial distribution of Quaternary sediments, here expressed by the related 
thickness pattern. These are mainly based on the results of gravity modelling, where Quaternary 
mass and its spatial distribution was forward modelled until a best-fit between the modelled and 
observed gravity signals of the Quaternary mass overlying the overdeepened trough was reached 
(Bandou, 2023; Bandou et al., 2023). Note that only the residual gravity anomalies of the Airport, 
Kehrsatz, Bern4, Bern2, Bremgarten and Bümpliz sections were modelled by Bandou et al. 
(2023). The grid refers to the Swiss coordinate system (CH1903+). 

https://doi.org/10.5194/egusphere-2024-683
Preprint. Discussion started: 14 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 10 

and the corresponding values change from c. -3.0 mGal (Airport profile) to approximately -1.5 and 211 
finally c. -1.0 mGal along the Kehrsatz and Wabern2 profiles, respectively (Figure 4a). The lowest 212 

residual anomaly signal with values between c. -0.5 mGal and -1 mGal were reported for the Wabern1 213 
profile (Bandou et al., 2023; Figure 3a). Farther downstream, the gravity signal related to the Quaternary 214 

fill increases again and reaches values between c. -1.0 and c. -2.0 mGal along the Bern sections, and 215 
then approximately -2.5 mGal along the Bremgarten section c. 2 km farther downstream. The residual 216 
anomaly data collected along the aforementioned gravity sections thus clearly depict the course of the 217 

Aare main overdeepening, which strikes SE-NW in the city area of Bern (Figures 3c, 4a). Towards the 218 
NW margin of the study area, a second overdeepening referred to as the Bümpliz side channel (Schwenk 219 

et al., 2022b) strikes SW-NE and converges with the Aare main overdeepening NW of Bern. The gravity 220 
signal of the Bümpliz sedimentary fill is less and reaches a value of c. -1.5 mGal (Figure 4a; Bandou et 221 
al., 2023). 222 

 223 
4.2 The thickness pattern of Quaternary sediments 224 
The thickest Quaternary suite can be found upstream and downstream of Bern (Figure 4b), where the 225 

Aare main overdeepening is between 4 and 5 km wide and > 200 m deep, consistent with drilling 226 
information (Bandou et al., 2023). In the city area of Bern, however, the main trough tends to become 227 

shallower. This is indicated by the thickness of the Quaternary sediments which becomes 100 m and 228 
possibly less (Figure 4b). We acknowledge that further 3D-gravity modelling would be needed to 229 
definitely verify such a claim. Although the data cover is low in this zone, the depth versus residual 230 

anomaly conversion could be constrained from nearby tie points. Accordingly, the resulting map 231 
displaying the thickness pattern of the Quaternary sediments suggests that the bedrock is situated at 232 

deeper levels forming a basin on either side of Bern, and that both depressions are separated by a 233 
bedrock swell or a riegel that is c. 150 m high but still buried by >100 m of Quaternary sediments 234 
(Figure 4b). Finally, the upstream side of the bedrock riegel dips gentler than the downstream side, 235 

which is twice as steep: on the stoss side, the residual gravity anomalies change from <-2.5 mGal to >-236 
1.0 mGal over a downstream distance of c. 4 km whereas on the lee side, the same change in the gravity 237 

signal occurs over only 2 km. Given that the residual gravity signal is a direct response of the bulk mass 238 
of Quaternary sediments overlying the Molasse bedrock, and thus their volume supposing a lower 239 
density than the Molasse bedrock (Bandou et al., 2022; 2023), the differences in the upstream and 240 

downstream gradients of the residual gravity anomaly values disclose the contrasts in the dip angles of 241 
the bedrock topography. 242 

 243 
4.3 The consideration of deep drillings discloses the occurrence of slot canyons 244 
The reconstructed bedrock topography of the target region reveals a complex pattern (Figure 5), which 245 

can be described as a bedrock riegel that is dissected by multiple, partly anastomosing slot canyons or 246 
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inner gorges (Bandou et al., 2023). At this stage, we cannot precisely reconstruct the number of the 247 
inferred canyons because we lack a high-resolution database of deep drillings (Figure 5). Yet, the 248 

discrepancy (Figure 6) between (i) a relatively low gravity signal particularly between the Wabern2 and 249 
the Bern sections (Figure 4a) and (ii) several drillings that reached the bedrock at much deeper levels 250 

that are >200 m below the surface (Figures 5, 6) can only be resolved by invoking the occurrence of a 251 
plateau at shallow elevations that is dissected by one or multiple slot canyons. These gorges are up to 252 
150 m deep and appear to connect the overdeepened basins upstream and downstream of the city area 253 

of Bern. In particular, south of Bern along the Aare profile (Figures 3b and 7a), the Aare main 254 
overdeepening is U-shaped in cross-section and displays two levels, each of which with steep lateral 255 

flanks and a flat base. While the upper flat base occurs at an elevation of c. 450 m a.s.l., the lower flat 256 
contact to the bedrock is situated at c. 250 m a.s.l. and thus approximately 200 m deeper than the upper 257 
level (Bandou et al., 2022). Approximately 5 km farther downstream along the Airport section (Figures 258 

3b, 7b), the cross-sectional geometry of the Aare main overdeepening maintains its generally U-shaped 259 
geometry with a base at an elevation between 200 and 250 m a.s.l. There, the base of the overdeepening 260 
appears less flat than farther upstream, but we acknowledge that the density of drillings in the region 261 

(Figure 5) and the resolution of the gravity data (Figure 4a, Bandou et al., 2023) is not high enough to 262 
fully support this comparison. Upon approaching the city area of Bern, the base of the bedrock becomes 263 

shallower and appears to evolve towards a plateau particularly between the Kehrsatz and Bern2 sections 264 
(Figures 5, 6, 7c, d and e). This plateau is situated at an elevation of c. 400 m a.s.l. (dashed lines on 265 
Figure 7) and dissected by multiple slot-canyons, some of which are up to 150 m deep and too narrow 266 

to be detected by the gravity survey (Bandou al., 2023). Farther to the Northwest reaching the terminal 267 
part of the Aare main overdeepening (Figure 3b), the trough widens again and gives way to a relatively 268 

deep basin where the deepest part occurs at an elevation of 300 m a.s.l. and possibly even deeper 269 
(Figures 5, 7f). This terminal basin appears to be connected with the Bümpliz side channel farther to 270 
the SW. Yet the density of drillings is too low (Figure 5) to determine whether a possible bedrock swell 271 

separates the Aare main overdeepening from the Bümpliz tributary channel (Figure 3b).  272 
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 273 

 274 

Figure 5: Hillshade DEM, illustrating the bedrock topography of the Bern area, together with deep drillings 
that either reached the bedrock (circles) or that ended in Quaternary sediments (diamonds). The 
shallow drillings (<50 m) are not displayed on this map since the number is too large (more than 
1000, please see Reber and Schlunegger, 2016). The isohypses were drawn for every 10 meters. 
The coordinates along the figure margin refer to the Swiss coordinate system (CH1903+). The 
sections shown on this map are used to illustrate the cross-sectional geometry of the 
overdeepening beneath Bern (see next figures). 
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5 Discussion 275 
5.1 Subglacial origin and the role of subglacial meltwater 276 

It is agreed upon in the literature that the formation of overdeepened basins can be understood as the 277 
response of erosion by glaciers. As summarized in Figure 1, the main arguments that have been put 278 

forward are (i) the depth of the base of these depressions, which are generally located below the current 279 
fluvial base-level, and (ii) the occurrence of adverse slopes in the downstream direction of these basins 280 
(Preusser et al., 2010; Patton et al., 2016; Alley et al., 2019; Magrani et al., 2022; Gegg and Preusser, 281 

2023). As outlined in the previous sections, such geometric features are also encountered for the Aare 282 
main overdeepening beneath the city of Bern. Therefore, it is not surprising that the origin of this 283 

depression has repeatedly been interpreted as the response of the erosional processes of a glacier with 284 
a source in the Central Alps of Switzerland (Dürst Stucki et al., 2010; Preusser et al., 2010; Reber and 285 
Schlunegger, 2016; Magrani et al., 2022; Bandou et al., 2023). Furthermore, as already outlined by 286 

Bandou et al. (2023) and further detailed in this work, the overdeepening underneath Bern can 287 
additionally be subdivided into a southeastern and a northwestern sub-basin. These depressions are 288 
separated from each other by a bedrock riegel or swell, which itself is dissected by one or multiple slot 289 

canyons establishing a hydrological link between the upstream and downstream basins (Figures 1, 5 290 
and 7). 291 

 292 

 293 
Using geomorphic evidence in combination with information about rates of rock uplift and fluvial 294 

incision into bedrock, Montgomery and Korup (2011) argued that an ensemble of bedrock riegels and 295 
slot canyons were shaped over several glacial/interglacial periods, and that they were most likely formed 296 
by subglacial meltwater during the decay of the glaciers and ice caps, when large volumes of meltwater 297 

were released. Such processes were particularly invoked to explain the history of inner gorge formation 298 

Figure 6: Example that illustrates of how we proceeded upon reconstructing the bedrock topography 
beneath Bern. We started with the general shape of the bedrock topography using the gravity 
signal of the bulk Quaternary mass as a basis (red line, and Figure 4b). Information from drillings 
>50 m deep (circles and diamonds: see Figure 5 for explanation of colors) allowed then to 
reconstruct the course and geometry of the slot canyons (blue line). The mass of their Quaternary 
fill is too low to be identified by the gravity survey. This is the case because the strength of a 
gravity signal decays exponentially with depth (see also Bandou et al., 2023, for further 
explanations). 
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in the Landquart and the Trift valleys (Figures 6b, 6c) situated in the Swiss Alps (Montgomery and 299 
Korup, 2011; Steinemann et al., 2021).  300 

 301 

 302 
As further examples, erosion by subglacial meltwater was put forward to explain the occurrence of inner 303 
gorges at the margin of the Fennoscandian ice sheet (based on the pattern of surface exposure ages; 304 
Jansen et al., 2014) and such a mechanism was used to explain (i) the origin of the deep channels on 305 

the floor of the eastern English Channel, and (ii) the breaching of the bedrock swell at the Dover strait 306 
during the aftermath of the Marine Isotope Stage (MIS) 12 or a later glaciation (Gupta et al., 2007; 307 

Cohen et al., 2014; Gupta et al., 2017). In this context, Jansen et al. (2014) noted that a typical field 308 
evidence for inferring a subglacial meltwater control includes (i) the occurrence of anastomosing 309 

Figure 7: Sections through the Bern area, where the geometry of the bedrock is taken from the DEM 
illustrated in Figure 5. The Aare section is taken from Bandou et al. (2022). See Figures 3 and 5 
for location and orientation of sections. 
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channels, (ii) undulating valley long profiles, and (iii) a topography that apparently amplifies the 310 
hydraulic potential. The resolution of our data is at a larger scale than the thalweg irregularities, but 311 

sufficient to display the anastomosing patterns of the slot canyons, with channels meandering, splitting 312 
and merging again (Figure 5).  313 

 314 
5.2 Formation through erosion by subglacial meltwater inferred from theory and modelling 315 
A subglacial meltwater contribution to the controls on the formation of overdeepenings was inferred 316 

based on theoretical relationships between meltwater runoff and the sediment transport capacity of 317 
proglacial and subglacial streams (e.g., Boultoon and Hindmarsch, 1987; Alley et al., 1997; Herman et 318 

al., 2011, Beaud et al., 2016). Because sediment transport increases exponentially with both the amount 319 
and seasonality of meltwater runoff, Alley et al. (1997) interpreted that subglacial and proglacial 320 
streams are among the most efficient sediment-transport mechanisms on Earth. This process peaks in 321 

the ablation zone of a glacier, where surface melt reaches the bed and significantly contributes to the 322 
generation of subglacial runoff. Yet, subglacial meltwater appears to play a minor role in contributing 323 
to a sedimentary budget if the subglacial runoff has a negligible contribution from surface melt (Alley 324 

et al., 1997). Finally, Cohen et al. (2023) showed that subglacial water is able to remove the sediment 325 
from the base of a glacier and to further incise into bedrock provided that the pressure of the subglacial 326 

meltwater and that of the ice overburden is at least the same, as also put forward by Boulton and 327 
Hindmarsch (1987). The results from the model of Cohen et al. (2023), tailored to determine the location 328 
of the subglacial drainage pathways, further suggest that such conditions most likely prevailed at the 329 

front of piedmont glaciers and particularly during the decay when large volumes of meltwater were 330 
available. In addition, the model predicts that under such circumstances, the locations of subglacial 331 

meltwater pathways are likely to coincide with segments where high rates of glacial erosion occur 332 
(Cohen et al., 2023). Therefore, it is not surprising that reaches with evidence for intense erosion by 333 
both water and ice occur in the same area and are hydrologically connected with each other, as is the 334 

case for the ensemble of overdeepened basins and slot canyons beneath Bern. Yet besides hydrological 335 
conditions, the erosional resistance of bedrock plays an important role where a bedrock swell could 336 

potentially form. This aspect is elaborated in the following paragraph. 337 
 338 
5.3 The role of bedrock strength 339 

The formation of riegels and basins is consensually understood as conditioned by differences in bedrock 340 
strengths. This also concerns the controls on the size of a basin itself where bedrock with a low erosional 341 

resistance tends to host a larger basin than lithologies where the erosional resistance is high (e.g., 342 
Magrani et al.., 2020; Gegg and Preusser, 2023). Following this logic, swells preferentially form in 343 
locations where the bedrock has a lower erodibility than the rock units farther upstream and 344 

downstream. This has been documented for the riegel in the Trift valley (Figure 2a), which separates 345 
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an overdeepened basin upstream from a wide valley farther downstream (Steinemann et al., 2021). 346 
There, the bedrock forming the ridge is made up of a banded, biotite-rich gneiss (Erstfeld gneiss), 347 

whereas the bedrock upstream and downstream of the swell is cut by multiple faults and fractures, thus 348 
offering a lower resistance to erosion. As another example, the bedrock riegel downstream of the 349 

confluence between the Aare and Gadmen valleys (Figure 2a) is made up of the Quinten Formation 350 
(Stäger et al., 2020). These limestones tend to have a higher mechanical strength (Kühni and Piffner, 351 
2001) than the sandstones-marl alternations (North Helvetic Flysch; Stäger et al., 2020) downstream of 352 

the bedrock swell, and the suite of sandstones, marls and dolomite beds upstream of it (Mels- and 353 
Quarten Formations; Stäger et al., 2020). In the Bern area, the inferred riegel is underlain by Late 354 

Miocene shallow marine sandstone (i.e. UMM), whereas the bedrock farther downstream comprises a 355 
suite of Late Oligocene fluvial sandstones (i.e. LFM) and marl interbeds (Isenschmid, 2019). It is 356 
postulated that the UMM sediments have a higher erosional resistance than the underlying LFM unit, 357 

based on the observation that the UMM forms a cap rock in the region (Isenschmid, 2019). Accordingly, 358 
the bedrock architecture in the Bern area is comparable to the examples explained above where the 359 
UMM bedrock forming the swell has a larger erosional resistance than the LFM units at least 360 

downstream of the riegel (Isenschmid, 2019). It is possible that Lower Freshwater Molasse (LFM) 361 
deposits with a low erosional resistance also occur at the base of the overdeepening farther upstream of 362 

the swell. We infer this from the Gurten drilling on the SW margin of the Wabern1 profile (Figure 4) 363 
where the LFM bedrock was encountered at a depth of >300 m a.s.l. (Garefalakis and Schlunegger, 364 
2019). This is indeed shallower than the basal part of the Aare main overdeepening along e.g., the 365 

Airport profile (Figure 6b). 366 
Presumably more important than the contrasts in bedrock erodibility: the bedrock swell underneath Bern 367 

is situated just upstream of the confluence area between the Valais and Aare glaciers (Figure 3b). As 368 
such, this situation shares many similarities with the examples in the Alpine valleys where the bedrock 369 
swells are situated directly upstream (Figures 2c, 2d, 2e and 2f), directly downstream (Figures 2a, b) or 370 

at the confluence (Figures 2g, h) between a tributary and a trunk valley. In the same sense, Lloyd et al. 371 
(2023) found that overdeepened basins and, as a consequence, the occurrence of bedrock swells farther 372 

downstream, are mainly situated in the confluence area of glacial valleys. In this case, the deep carving 373 
into the bedrock would be the result of an acceleration of the ice flow in response to the increase in the 374 
ice flux downstream of the confluence region (Herman et al., 2015). Alternatively, a bedrock riegel 375 

could also form upstream of the confluence of two glaciers as is the case in the Maggia and Urbach 376 
valleys (Figure 2e, f). Such a situation most likely also prevailed in the Bern area, at least during LGM 377 

times. There, the damming of the Aare glacier by the much larger Valais glacier could have caused a 378 
reduction of the flow velocity of the Aare glacier (Figure 3b). Consequently, the shear velocity and thus 379 
the bedrock abrasion rates would decrease, thereby facilitating the preservation of a bedrock swell.  380 

 381 
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5.4 Differences in the geometries between the exposed riegels and basins in the Alpine valleys, and 382 
the overdeepening beneath Bern  383 

Despite obvious similarities, there are also major differences between the geometric properties of the 384 
overdeepening system beneath Bern and the currently exposed riegels and slot canyons in the Alpine 385 

valleys (Figure 2 versus Figures 5 and 7). The most striking one is the occurrence of the riegel and inner 386 
gorges approximately 50-100 m below the current base-level, and the absence of an obvious 387 
continuation of the thalweg NW of Bern (Figure 3c). It is indeed very unlikely that the Aare main 388 

overdeepening was linked with the Meikirch depression farther to the north (Figure 3c). We base this 389 
interpretation on available geological maps (Gerber, 1927) and drillings (Reber and Schlunegger, 2016), 390 

showing that the northern edge of the Aare main overdeepening and the Meikirch trough are separated 391 
by Molasse bedrock with no evidence for connecting channels. Accordingly, the inferred interpretation 392 
where the slot canyons beneath Bern were formed by subglacial meltwater requires a mechanism where 393 

the meltwater is not only capable to incise into bedrock beneath a glacier, but also to escape the 394 
depression by ascending nearly 200 m from the base of the overdeepening to the surface near the 395 
glacier’s snout. Using Bernoulli’s principle as a basis (e.g., Batchelor, 1967), it was proposed that such 396 

an ascent of subglacial meltwater was driven by the translation of large hydrostatic pressures into 397 
hydrodynamic pressures at the downstream margin of a glacier (Dürst Stucki and Schlunegger, 2013). 398 

In addition, such a mechanism is most effective at work where the surface slope of a glacier is steeper 399 
than the adverse slope of an overdeepening (Hooke and Pohjola, 1994), as is commonly found in the 400 
frontal part of a glacier (Figure 1a). Since the ratio between the densities of ice and water is >0.9 401 

(Harvey, 2007), the inferred 200 m-rise of the meltwater requires a minimum hydrostatic pressure 402 
corresponding to >250 m-thick ice to allow an upward water flow, and it conditions the occurrence of 403 

a hydrologically closed subglacial channel network. Such a scenario is realistic, as in the Bern area the 404 
Aare glacier was several hundred m thick during the past glaciations (Bini et al., 2009; Preusser et al., 405 
2011; Figure 3b). If this hypothesis is valid, then the thickness of the piedmont glaciers sets an 406 

uppermost limit to the depth at which overdeepenings can be carved into the bedrock, mainly because 407 
sufficient pressures are required for the subglacial meltwater to ascend to the surface from deeper levels. 408 

Yet it is possible that the large porosities of nearly 20% in the Molasse sandstones (Keller et al., 1990) 409 
could have facilitated the escape of subglacial meltwater to the groundwater. This could have caused a 410 
reduction in static pressures, violating the inference of a closed system. However, we consider the 411 

permeabilities of the Molasse sandstone beds (<1000 md, Keller et al., 1990) as low enough to consider 412 
depressurization through meltwater runoff to the groundwater as negligible. 413 
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 414 

 415 

Figure 8: Development of stable isotopes and Marine Isotope Stages (MIS) within a chronological 
framework (Lisiecki and Raymo, 2005; Railsback et al., 2015) and glacial periods recorded in the 
Plateau of the Swiss Alps (modified after Preusser et al., 2011; 2021). The age of the Möhlin 
glaciation is taken from Dieleman et al. (2022). The age of the Thalgut section is based on pollen 
records (Welten, 1982; 1984) and was subsequently described by Schlüchter (1989), yielding a 
Holsteinian age for the basal part of the section. The chronological framework for the upper part 
of this section was then updated by Preusser and Schlüchter (2004). The Holsteinian could either 
correspond to MIS 9 (according to U/Th ages established for peat layers in the type section of the 
Holsteinian at Bossel, Germany; Geyh and Müller, 2005) or to MIS 11 based on 40Ar/39Ar ages of 
tephra (Roger et al., 1999). Following Koutsodendris et al. (2012) we preferentially use an age 
assignment to MIS 11. Ages for the Meikirch section are based on pollen assemblages (Welten, 
1982) and optically stimulated luminescence (OSL) ages by Preusser et al. (2005). The pollen 
assemblages of Welten (1982) were subsequently reinterpreted by Schläfli et al. (2021). The ages 
of the deposits encountered in the Brunnenbohrung are based on concentrations of 14C measured 
in organic material at nearly the base of the drilling (Kellerhals and Häfeli, 1984; Zwahlen et al., 
2021). The chronological framework of the Rehhag drilling was established by Schwenk et al. 
(2022a) using the results of feldspar luminescence dating conducted on two samples at the top of 
a section, which is exposed in a quarry next to the Rehhag drilling. Finally, the chronology of the 
Niederweningen drilling and sediments encountered in the Bülach and Strassberg troughs are 
based on OSL signals measured in quartz minerals (Niederweningen: Dehnert et al., 2012; Bülach 
and Strassberg troughs: Büchi et al., 2018). 
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5.5 Chronological framework  416 
A high-resolution chronological framework (e.g., Reber et al., 2014; Kamleitner et al., 2023a) has been 417 

established from deposits of the LGM that occurred c. 20 ka ago (Ivy-Ochs et al., 2008; Kamleitner et 418 
al., 2023b) (Figure 7). A relatively detailed chronology is also available for the first and second glacial 419 

advances during the Birrfeld glaciation (Ivy-Ochs et al., 2008; Preusser, 2004; Preusser et al., 2007; 420 
2011; Pfander et al., 2022). For previous glaciations, the chronological framework is less clear. Yet, 421 
Preusser et al. (2011) summarized multiple evidence for proposing that the piedmont glaciers did 422 

advance into the Alpine foreland between 185 and 130 ka, i.e. the Beringen glaciation (MIS 6, Figure 423 
8), and that this advance into the foreland was larger than during the LGM. The age assignments to the 424 

glaciations preceding MIS 6 are still debated. While the largest extent of the north Alpine glaciers (Most 425 
Extensive Glaciation of the Swiss Foreland cf. Schlüchter, 1988) was assigned to the Möhlin glaciation 426 
(Preusser et al., 2011) and recently dated to 500±100 ka and thus to MIS 12 through burial dating with 427 

cosmogenic 26Al and 10Be (Dieleman et al., 2022), a re-evaluation of the reported concentrations of the 428 
cosmogenic nuclides yielded an age that is more consistent with MIS 6 (Nørgaard et al., 2023). Yet we 429 
favour the chronology by Dieleman et al. (2022) and the assignment to a MIS 12 age because it is better 430 

supported by a-priori field-based information such as the results of detailed mapping. The ages of the 431 
Habsburg and Hagenholz glaciations, which occurred between the Beringen and Möhlin glaciations, 432 

are the least constrained. Whereas Preusser et al. (2011) considered the Hagenholz ice advance to 433 
postdate MIS 7 (Figure 8), Büchi et al. (2018) and subsequently Preusser et al. al. (2021) rather 434 
considered the Hagenholz glaciation to predate MIS 7 thereby following Keller and Kryass (2010). 435 

The Quaternary fill of overdeepenings can now be placed into the aforementioned chronological 436 
framework of glacial advances onto the Swiss plateau during the past glaciations (Figure 8). The 437 

database is sparse, but the available ages imply that the oldest backfills that have been dated so far 438 
postdate the Most Extensive Glaciation (or the Möhlin glaciation), dated to MIS 12 (Figure 8). This is 439 
the case for the sedimentary fill of the Are main overdeepening where the occurrence of a Holsteinian 440 

interglacial lacustrine sequence (Figure 8) was reported for the basal marls of the Thalgut section, which 441 
could either correspond to MIS 9 (Roger et al., 1999) or MIS 11 (see discussion in Preusser et al., 2011; 442 

Koutsodendris et al., 2012; and Schwenk et al., 2022a for discussion of ages). In addition, c. 6 km 443 
farther downstream from the Thalgut section, nearly the entire sedimentary sequence of the Aare main 444 
overdeeepening was encountered in the Brunnenbohrung drilling (Figure 3c) and was constrained to an 445 

age postdating MIS 6 (Kellerhals and Häfeli, 1984; Zwahlen et al., 2021). The related sedimentary suite 446 
could thus span the entire time interval between the Beringen and Birrfeld glaciations including the 447 

Holocene (Bandou et al., 2022). Farther north of Bern, the Quaternary succession overlying the bedrock 448 
has an age that is MIS 8 and older (Schwenk et al., 2022a), thus corresponding to the Habsburg 449 
glaciation or any other glacial period pre-dating Habsburg (Figure 8). These ages are not precise enough 450 

to reconstruct in detail the history of how and particularly when the overdeepenings were formed, but 451 

https://doi.org/10.5194/egusphere-2024-683
Preprint. Discussion started: 14 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 20 

they are consistent with the chronologies established for other overdeepening fills (Figure 8). In 452 
particular, most published ages do support an interpretation where the deep troughs were originally 453 

formed after the Middle Pleistocene Transition (Schlüchter, 2004) and thus during the same period 454 
when the U-shaped Alpine valleys were carved (Häuselmann et al., 2007; Valla et al., 2011). This was 455 

also the same time when the base-level in the northern margin of the Swiss Plateau lowered at the 456 
highest rates (Claude et al., 2019). Apparently, the change in the frequency of glacial-interglacial cycles 457 
from a 40 ka- to a 100 ka-periodicity, which occurred c. 800 ka ago, not only resulted in rapid glacial 458 

erosion (Pedersen and Egholm, 2013) and in the deep glacial carving of U-shaped valleys in the Alps 459 
(Häuselmann et al., 2007, Valla et al., 2011), but also in the formation of overdeepenings with complex 460 

geometries including basins, riegels and slot canyons in the foreland.  461 
 462 
6 Conclusions 463 

Bedrock riegels separating upstream and downstream basins are common features in modern Alpine 464 
valleys, and they are likely to be encountered in overdeepenings. In addition, we propose that these 465 
riegels occur as ensembles together with slot canyons that cut through the swells and establish a 466 

hydrological link between the upstream and downstream basins. We suggest this based on our 467 
reconstruction of the bedrock topography of the Aare main overdeepening in the Bern area, and we 468 

propose that such ensembles of basins, riegels and slot canyons also occur in other Alpine 469 
overdeepenings such as the Rhone, Rhine and Inn valleys (Figure 9). We suggest that these slot canyons 470 
were formed through incision by glacial meltwater during the decaying state of a glacier when large 471 

volumes of meltwater were available. For the bedrock swell underneath Bern, the resolution of the 472 
dataset presented in this work does not allow to locate and reconstruct the precise course of the inferred 473 

slot canyons. Yet the presented reconstruction of the bedrock topography does reconcile (i) the 474 
occurrence of a low residual gravity anomalies in the Bern area (Figure 4a), which implies a relatively 475 
low bulk mass of Quaternary sediments, and (ii) the depth at which Quaternary sediments were 476 

encountered in drillings (Figures 5, 6). In addition, in many Alpine valleys, such structures appear to be 477 
preferentially formed in the confluence area between two glacial valleys and where the bedrock has a 478 

relatively low erodibility. We posit this hypothesis for the overdeepening below the Bern area, where 479 
such a bedrock swell appears to be situated just upstream of the confluence between the Aare and Valais 480 
glaciers, at least during LGM times and possibly during previous glaciations. In addition, the inferred 481 

bedrock riegel beneath Bern is located where the bedrock has a lower erodibility than downstream and 482 
possibly upstream, at least in the basal part of the trough. Yet, we acknowledge that an improved 483 

understanding about the origin of such structures requires more information particularly on the 484 
chronology of glacial advances and the overdeepening fills. 485 
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