Preprints
https://doi.org/10.5194/egusphere-2024-651
https://doi.org/10.5194/egusphere-2024-651
12 Mar 2024
 | 12 Mar 2024

Retrieval of airborne Ku-Band SAR Using Forward Radiative Transfer Modeling to Estimate Snow Water Equivalent: The Trail Valley Creek 2018/19 Snow Experiment

Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux

Abstract. Accurate snow information at high spatial and temporal resolution is needed to support climate services, water resource management, and environmental prediction services. However, snow remains the only element of the water cycle without a dedicated Earth Observation mission. The snow scientific community has shown that Ku-Band radar measurements provide quality snow information with its sensitivity to snow water equivalent and the wet/dry state of snow. With recent developments of tools like the Snow MicroPenetrometer (SMP) to retrieve snow microstructure data in the field and radiative transfer models like the Snow Microwave Radiative Transfer Model (SMRT), it becomes possible to properly characterize the snow and how it translates into radar backscatter measurements. An experiment at Trail Valley Creek (TVC), Northwest Territories, Canada was conducted during the winter of 2018/19 in order to characterize the impacts of varying snow geophysical properties on Ku-Band radar backscatter at a 100-m scale. Airborne Ku-Band data was acquired using the University of Massachusetts radar instrument. This study shows that it is possible to calibrate SMP data to retrieve statistical information on snow geophysical properties and properly characterize a representative snowpack at the experiment scale. The tundra snowpack measured during the campaign can be characterize by two layers corresponding to a rounded snow grain layer and a depth hoar layer. Using Radarsat-2 and TerraSAR-X data, soil background roughness properties were retrieved (msssoil = 0.010±0.002) and it was shown that a single value could be used for the entire domain. Microwave snow grain size polydispersity values of 0.74 and 1.11 for rounded and depth hoar snow grains, respectively, was retrieved. Using the Geometrical Optics surface backscatter model, the retrieved effective soil permittivity increased from C-Band (εsoil = 2.47) to X-Band (εsoil = 2.61), to Ku-Band (εsoil = 2.77) for the TVC domain. Using SMRT and the retrieved soil and snow parameterizations, an RMSE of 2.6 dB was obtained between the measured and simulated Ku-Band backscatter values when using a global set of parameters for all measured sites. When using a distributed set of soil and snow parameters, the RMSE drops to 0.9 dB. This study thus shows that it is possible to link Ku-Band radar backscatter measurements to snow conditions on the ground using a priori knowledge of the snow conditions to retrieve SWE at the 100 m scale.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

28 Aug 2024
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-651', Anonymous Referee #1, 14 Apr 2024
  • RC2: 'Comment on egusphere-2024-651', Anonymous Referee #2, 29 Apr 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-651', Anonymous Referee #1, 14 Apr 2024
  • RC2: 'Comment on egusphere-2024-651', Anonymous Referee #2, 29 Apr 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to revisions (further review by editor and referees) (14 May 2024) by Carrie Vuyovich
AR by Benoit Montpetit on behalf of the Authors (21 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 Jun 2024) by Carrie Vuyovich
RR by Anonymous Referee #2 (24 Jun 2024)
ED: Publish as is (08 Jul 2024) by Carrie Vuyovich
AR by Benoit Montpetit on behalf of the Authors (16 Jul 2024)  Manuscript 

Journal article(s) based on this preprint

28 Aug 2024
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux

Viewed

Total article views: 598 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
423 141 34 598 23 23
  • HTML: 423
  • PDF: 141
  • XML: 34
  • Total: 598
  • BibTeX: 23
  • EndNote: 23
Views and downloads (calculated since 12 Mar 2024)
Cumulative views and downloads (calculated since 12 Mar 2024)

Viewed (geographical distribution)

Total article views: 629 (including HTML, PDF, and XML) Thereof 629 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.