Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-570
https://doi.org/10.5194/egusphere-2024-570
07 Mar 2024
 | 07 Mar 2024

Quantifying the diurnal variation of atmospheric NO2 from observations of the Geostationary Environment Monitoring Spectrometer (GEMS)

David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong

Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) over Asia is the first geostationary Earth orbit instrument in the virtual constellation of sensors for atmospheric chemistry and composition air quality research and applications. For the first time, the hourly observations enable studies of diurnal variation of several important trace gas and aerosol pollutants including nitrogen dioxide (NO2) which is the focus of this work. NO2 is a regulated pollutant and an indicator of anthropogenic emissions in addition to being involved in tropospheric ozone chemistry and particulate matter formation. We present new quantitative measures of NO2 tropospheric column diurnal variation which can be greater than 50 % of the column amount especially in polluted environments. The NO2 distribution is seen to change hourly and can be quite different from what would be seen by a once-a-day low Earth orbit satellite observation. We use GEMS data in combination with TROPOMI satellite and Pandora ground-based remote sensing measurements and MUSICAv0 3D chemical transport model analysis to examine the NO2 diurnal variation in January and June 2023 over Northeast Asia and Seoul, South Korea, study regions to distinguish the different emissions, chemistry, and meteorological processes that drive the variation. Understanding the relative importance of these processes will be important for including pollutant diurnal variation in models aimed at determining true pollutant exposure levels for air quality studies. The work presented here also provides a path for investigating similar NO2 diurnal cycles in the new TEMPO data over North America, and later over Europe with S-4.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

15 Aug 2024
Quantifying the diurnal variation in atmospheric NO2 from Geostationary Environment Monitoring Spectrometer (GEMS) observations
David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong
Atmos. Chem. Phys., 24, 8943–8961, https://doi.org/10.5194/acp-24-8943-2024,https://doi.org/10.5194/acp-24-8943-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Until recently, satellite observations of atmospheric pollutants at any location could only be...
Share