Preprints
https://doi.org/10.5194/egusphere-2024-492
https://doi.org/10.5194/egusphere-2024-492
13 Mar 2024
 | 13 Mar 2024

Molecular level characterization of supraglacial dissolved organic matter sources and exported pools on the southern Greenland Ice Sheet

Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio

Abstract. During the ablation season, active microbial communities colonise large areas of the Greenland Ice Sheet surface and produce dissolved organic matter (DOM) that may be exported downstream by surface melt. Meltwater flow through the bare ice interfluvial area, characterized by a porous weathering crust, is slow (~ 10-2 m d-1), meaning that it presents a potential site for photochemical and/or microbial alteration of supraglacial DOM. Transformations of supraglacial DOM during transport through the supraglacial drainage system remain unexplored, limiting our understanding of supraglacial DOM inputs to downstream subglacial and coastal ecosystems. Here, we employ negative-ion electrospray ionization 21 tesla Fourier transform ion cyclotron resonance mass spectrometry to catalogue the molecular composition of DOM in supraglacial dark ice, weathering crust meltwater, and supraglacial stream water sampled in a hydrologically connected supraglacial micro-catchment to address this knowledge gap. Dark ice DOM contained significantly more aromatic (25 ± 3 %) and less biolabile (13 ± 4 %) DOM than weathering crust meltwater (3 ± 0 and 50 ± 0 %, respectively), pointing to retention of DOM on the ice surface and microbial, as well as photochemical alteration of DOM during transit through the supraglacial drainage system. These findings have implications for our understanding of supraglacial biogeochemical cycling, highlighting the importance of including the weathering crust photic zone when assessing supraglacial inputs to subglacial and downstream ecosystems.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

06 Jan 2025
Molecular-level characterization of supraglacial dissolved and water-extractable organic matter along a hydrological flow path in a Greenland Ice Sheet micro-catchment
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025,https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-492', Anonymous Referee #1, 05 Apr 2024
    • AC1: 'Reply on RC1', Eva Doting, 17 May 2024
  • RC2: 'Comment on egusphere-2024-492', Muhammed Fatih Sert, 05 Apr 2024
    • AC2: 'Reply on RC2', Eva Doting, 17 May 2024
  • RC3: 'Comment on egusphere-2024-492', Anonymous Referee #3, 18 Apr 2024
    • AC3: 'Reply on RC3', Eva Doting, 17 May 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-492', Anonymous Referee #1, 05 Apr 2024
    • AC1: 'Reply on RC1', Eva Doting, 17 May 2024
  • RC2: 'Comment on egusphere-2024-492', Muhammed Fatih Sert, 05 Apr 2024
    • AC2: 'Reply on RC2', Eva Doting, 17 May 2024
  • RC3: 'Comment on egusphere-2024-492', Anonymous Referee #3, 18 Apr 2024
    • AC3: 'Reply on RC3', Eva Doting, 17 May 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (27 May 2024) by Helge Niemann
AR by Eva Doting on behalf of the Authors (25 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (28 Oct 2024) by Helge Niemann
RR by Anonymous Referee #1 (28 Oct 2024)
RR by Muhammed Fatih Sert (04 Nov 2024)
ED: Publish as is (06 Nov 2024) by Helge Niemann
AR by Eva Doting on behalf of the Authors (07 Nov 2024)

Journal article(s) based on this preprint

06 Jan 2025
Molecular-level characterization of supraglacial dissolved and water-extractable organic matter along a hydrological flow path in a Greenland Ice Sheet micro-catchment
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025,https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio

Viewed

Total article views: 672 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
500 134 38 672 62 22 23
  • HTML: 500
  • PDF: 134
  • XML: 38
  • Total: 672
  • Supplement: 62
  • BibTeX: 22
  • EndNote: 23
Views and downloads (calculated since 13 Mar 2024)
Cumulative views and downloads (calculated since 13 Mar 2024)

Viewed (geographical distribution)

Total article views: 674 (including HTML, PDF, and XML) Thereof 674 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 06 Jan 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study provides new insights into the transformation of dissolved organic matter (DOM) that takes place as meltwater flows through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microorganisms and sunlight to alter the DOM in glacial meltwater. This is important as supraglacial meltwaters deliver DOM and nutrients to microorganisms living in downstream receiving aquatic environments.