Preprints
https://doi.org/10.5194/egusphere-2024-489
https://doi.org/10.5194/egusphere-2024-489
27 Mar 2024
 | 27 Mar 2024

Seasonal Snow-Atmosphere Modeling: Let's do it

Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott

Abstract. Mountain snowpack forecasting relies on accurate mass and energy input information to the snowpack. For this reason, coupled snow-atmosphere models, which downscale input fields to the snow model using atmospheric physics, have been developed. These coupled models are often limited in the spatial and temporal extent of their use by computational constraints. In addressing this challenge, we introduce HICARsnow, an intermediate-complexity coupled snow-atmosphere model. HICARsnow couples two physics-based models of intermediate complexity to enable basin-scale snow and atmospheric modeling at seasonal time scales. To showcase the efficacy and capability of HICARsnow, we present results from its application to a high-elevation basin in the Swiss Alps. The simulated snow depth is compared throughout the snow season to aerial LiDAR data. The model shows reasonable agreement with observations from peak accumulation through late-season melt-out, representing areas of high snow accumulation due to redistribution processes, as well as melt patterns caused by interactions between radiation and topography. HICARsnow is also found to resolve preferential deposition, with model output suggesting that parameterizations of the process using surface wind fields only may be inappropriate under certain atmospheric conditions. The two-way coupled model also improves surface air temperatures over late-season snow, demonstrating added value for the atmospheric model as well. Differences between observations and model output during the accumulation season indicate a poor representation of redistribution processes away from exposed ridges and steep terrain, and a low-bias in albedo at high elevations during the ablation season. Overall, HICARsnow shows great promise for applications in operational snow forecasting and studying the representation of snow accumulation and ablation processes.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

19 Sep 2024
Seasonal snow–atmosphere modeling: let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024,https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Accurate information about atmospheric variables are needed to produce simulations of mountain...
Share