Preprints
https://doi.org/10.5194/egusphere-2024-3698
https://doi.org/10.5194/egusphere-2024-3698
06 Dec 2024
 | 06 Dec 2024

Climate Forcing due to Future Ozone Changes: An intercomparison of metrics and methods

William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble

Abstract. We use Earth system models and a chemistry transport model to determine the radiative forcing due to changes in ozone Three different measures of radiative forcing (instantaneous: IRF, stratospheric-temperature adjusted: SARF, effective: ERF) are compared using both online and offline calculations for the IRF and SARF, and online calculations for the ERF. To isolate the ozone radiative forcing, we configure the model experiments such that only the ozone changes (including respective changes in water vapour, clouds etc.) affect the evolution of the model physics and dynamics. We find robust changes in ozone due to future changes in ozone precursors and ODSs. These lead to a positive radiative forcing of 0.27±0.09 Wm-2 ERF, 0.24 ± 0.021 W m-2 offline SARF, 0.29 ± 0.10 Wm-2 online IRF. Increases in ozone lead to an overall decrease in cloud fraction (although there are increases at some levels). This decrease causes an overall negative adjustment to the radiative forcing (positive in the short-wave (SW), but negative in the long-wave (LW)). Non-cloud adjustments (excluding stratospheric temperature) are positive (both LW and SW). The opposing signs of the cloud and non-cloud adjustments mean the overall adjustment to the SARF is slightly positive.

We find general agreement between models in the impact of the ozone changes on temperature and cloud fractions and agreement in the signs of the individual adjustment terms when split into SW and LW. However, the overall difference between the ERF and SARF is smaller than the inter-model variability.

Competing interests: Some authors are members of the editorial board of Atmospheric Chemistry and Physics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

21 Aug 2025
Climate forcing due to future ozone changes: an intercomparison of metrics and methods
William J. Collins, Fiona M. O'Connor, Rachael E. Byrom, Øivind Hodnebrog, Patrick Jöckel, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
Atmos. Chem. Phys., 25, 9031–9060, https://doi.org/10.5194/acp-25-9031-2025,https://doi.org/10.5194/acp-25-9031-2025, 2025
Short summary
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-3698', Owen Cooper, 20 Dec 2024
  • RC1: 'Comment on egusphere-2024-3698', Christopher Smith, 02 Jan 2025
  • RC2: 'Comment on egusphere-2024-3698', Anonymous Referee #2, 14 Jan 2025
  • AC1: 'Comment on egusphere-2024-3698', William Collins, 17 Apr 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-3698', Owen Cooper, 20 Dec 2024
  • RC1: 'Comment on egusphere-2024-3698', Christopher Smith, 02 Jan 2025
  • RC2: 'Comment on egusphere-2024-3698', Anonymous Referee #2, 14 Jan 2025
  • AC1: 'Comment on egusphere-2024-3698', William Collins, 17 Apr 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by William Collins on behalf of the Authors (15 May 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (18 May 2025) by Ivy Tan
RR by Christopher Smith (19 May 2025)
RR by Anonymous Referee #2 (16 Jun 2025)
ED: Publish subject to technical corrections (16 Jun 2025) by Ivy Tan
AR by William Collins on behalf of the Authors (09 Jul 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

21 Aug 2025
Climate forcing due to future ozone changes: an intercomparison of metrics and methods
William J. Collins, Fiona M. O'Connor, Rachael E. Byrom, Øivind Hodnebrog, Patrick Jöckel, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
Atmos. Chem. Phys., 25, 9031–9060, https://doi.org/10.5194/acp-25-9031-2025,https://doi.org/10.5194/acp-25-9031-2025, 2025
Short summary
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble

Data sets

Data repository in support of “Climate Forcing due to Future Ozone Changes: An intercomparison of metrics and methods”, F. M. O’Connor et al. https://zenodo.org/records/14238129

William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble

Viewed

Total article views: 792 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
664 99 29 792 44 29 42
  • HTML: 664
  • PDF: 99
  • XML: 29
  • Total: 792
  • Supplement: 44
  • BibTeX: 29
  • EndNote: 42
Views and downloads (calculated since 06 Dec 2024)
Cumulative views and downloads (calculated since 06 Dec 2024)

Viewed (geographical distribution)

Total article views: 764 (including HTML, PDF, and XML) Thereof 764 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 21 Aug 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
If reductions aren’t implemented to limit emissions of pollutants that produce ozone then we calculate that this will cause a warming of climate. We assess how the future warming from ozone is affected by changing meteorological variables such as clouds and atmospheric temperatures. We find that reductions in high cloud cover tend to slightly reduce the warming from ozone.
Share