Preprints
https://doi.org/10.5194/egusphere-2024-3355
https://doi.org/10.5194/egusphere-2024-3355
12 Dec 2024
 | 12 Dec 2024

Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell

Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret

Abstract. Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modeling. However, most studies focus on daily-scale predictions, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. Moreover, training an LSTM exclusively on sub-daily data is computationally expensive, and may lead to model-learning difficulties due to the extended sequence lengths. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use input of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost. Building on two existing methods previously proposed by coauthors of this study, the MF-LSTM processes older inputs at coarser temporal resolutions than more recent ones. The MF-LSTM gives the possibility to handle different temporal frequencies, with different number of input dimensions, in a single LSTM cell, enhancing generality and simplicity of use. Our experiments, conducted on 516 basins from the CAMELS-US dataset, demonstrate that MF-LSTM retains state-of-the-art performance while offering a simpler design. Moreover, the MF-LSTM architecture reported a 5x reduction in processing time, compared to models trained exclusively on hourly data.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System Sciences. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

26 Mar 2025
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art performance for...
Share