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Abstract. Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff
hydrological modeling. However, most studies focus on daily-scale predictions, limiting the benefits of sub-daily (e.g. hourly)
predictions in applications like flood forecasting. Moreover, training an LSTM exclusively on sub-daily data is computationally
expensive, and may lead to model-learning difficulties due to the extended sequence lengths. In this study, we introduce a new
architecture, multi-frequency LSTM (MF-LSTM), designed to use input of various temporal frequencies to produce sub-daily
(e.g. hourly) predictions at a moderate computational cost. Building on two existing methods previously proposed by coauthors
of this study, the MF-LSTM processes older inputs at coarser temporal resolutions than more recent ones. The MF-LSTM
gives the possibility to handle different temporal frequencies, with different number of input dimensions, in a single LSTM
cell, enhancing generality and simplicity of use. Our experiments, conducted on 516 basins from the CAMELS-US dataset,
demonstrate that MF-LSTM retains state-of-the-art performance while offering a simpler design. Moreover, the MF-LSTM

architecture reported a 5x reduction in processing time, compared to models trained exclusively on hourly data.

1 Introduction

Data-driven methods, particularly Long Short-Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997), have
demonstrated state-of-the-art performance in rainfall-runoff hydrological modeling (Kratzert et al., 2019b; Lees et al., 2021;
Loritz et al., 2024). Currently, most studies primarily focus on daily-scale predictions. However, certain applications, such as
flood forecasting, can benefit from sub-daily scale predictions, especially in small fast-responding catchments. These higher
temporal resolutions allow the model to better capture an event’s magnitude and avoid artificial attenuation or dampening
caused by daily aggregation. In addition, they allow the model to reproduce more accurately the temporal dynamics of the
hydrograph, and open up the possibility to capture flash floods. For this reason, many operational flood forecasting services,

including the National Water Prediction Service of the National Oceanic and Atmospheric Administration (NOAA) in the US
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and the Flood Forecasting Center Baden-Wiirttemberg (HVZ) in Germany, produce forecasts at a sub-daily resolution for their
operational services.

One major drawback of running LSTM models at exclusively hourly resolution is the significant increase in computational
cost for both model training and evaluation. For instance, studies using daily-resolution LSTM models typically employ a
sequence length of 365 days for predictions (Kratzert et al., 2019b; Klotz et al., 2022; Lees et al., 2021; Loritz et al., 2024). By
spanning a full year of data, this approach allows the LSTM model to capture long-term seasonal processes, such as snowmelt
(Kratzert et al., 2019a). However, for hourly data, the equivalent sequence length increases to 365 x 24 = 8 760 timesteps,
leading to a substantial increase in the computational resources required. Moreover, LSTMs have shown difficulties in learning
information over long sequence lengths (Chien et al., 2021; Zhang and You, 2020), which would create a direct limitation when
working exclusively with high-frequency data, such as hourly or 15-min resolutions.

A potential strategy to tackle this problem is to reduce the sequence length. However, this comes at the cost of excluding
long-term processes. For example, if a sequence length of 365 timesteps is maintained when working with hourly data, the
look-back period would only cover two weeks, as opposed to a full year. Consequently, the model might not account for
important long-term dynamics.

Another possible solution is the concept of ODE-LSTMs, proposed by Lechner and Hasani (2020). The authors handle non-
uniformly sampled data by the use of a continuous-time state representation of recurrent neural networks. Gauch et al. (2021)
carried out experiments exploring the potential of ODE-LSTM for rainfall-runoff modelling, however, they indicate that this
method achieved lower performance at a higher computational time than their proposed alternative.

Gauch et al. (2021) proposed the idea of processing older inputs at coarser temporal resolutions compared to more recent
data. This approach is based on the fact that, for a dissipative system like a catchment, the importance of the temporal dis-
tribution of inputs diminishes the further back in time we look (Loritz et al., 2021). For instance, in cases where discharge
during spring is driven by snow melt, the exact hour in which snow accumulated two months earlier is unlikely to affect the
hydrograph. Similarly, when modelling a storm, the basin’s response will vary depending on soil saturation. If the soil is satu-
rated due to heavy rain over the past month, the precise timing of a peak in rainfall three weeks ago becomes irrelevant. Thus,
this approach of handling inputs at different temporal resolutions allows the model to capture long-term processes without
the computational burden of processing all data at high frequency. In the following, we use a concrete example to both better
illustrate the ideas proposed by Gauch et al. (2021) and to make the connection with our method. For this, we will use one
year of data to make a prediction, but only the most recent two weeks (14 x 24 = 336 timesteps) will be processed at hourly
resolution, while the rest is processed at daily resolution. The number of timesteps processed at each frequency is a model
hyperparameter.

The first architecture proposed by Gauch et al. (2021), referred to as sSMTS-LSTM, begins with a forward pass at daily
resolution (e.g., 365 timesteps). The LSTM’s hidden and cell states from two weeks prior to the final timestep are then retrieved,
and the LSTM is reinitialized with these states. Then a second forward pass is performed, using hourly data for the last two

weeks. Moreover, since both daily (from the first forward pass) and hourly (from the second forward pass) predictions are
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available for the last two weeks, the authors proposed a regularization technique, in which an extra term is incorporated in the
loss function to induce consistency between the daily and hourly predictions.

One limitation of this architecture, highlighted by the authors, is that because the same LSTM cell processes both daily and
hourly data, the input at both timescales must include the same number of variables. As they mentioned, this can be problematic
in operational settings where different temporal resolutions often have different available variables. To address this, the authors
proposed a more general architecture called MTS-LSTM. In this variant, the hidden and cell states retrieved from two weeks
prior are passed through a transfer function and the result is used to initialize a second LSTM cell, which processes the hourly
data. The advantage of this approach is that, with separate LSTM cells for each temporal frequency, different sets of input
variables can be used at each resolution. We refer to Fig. B1 for a graphic visualization of these ideas.

Building on the work of Gauch et al. (2021), we propose a new methodology that combines the strengths of both models.
We refer to it as multi-frequency LSTM (MF-LSTM). On one hand, this new methodology retains the simplicity and elegance
of the sMTS-LSTM by using a single LSTM cell to process data at multiple temporal frequencies. On the other hand, we keep
the ability of the MTS-LSTM to handle different numbers of input variables at each frequency, which we accomplish through
the use of embedding layers. Moreover, and as explained in detail in the following sections, we make predictions only on the
highest frequency (e.g. hourly), and the remaining frequencies are recovered by aggregation, which guarantees cross-timescale
consistency without the use of additional regularization.

The remainder of the manuscript is structured as follows. Section 2 details the MF-LSTM architecture and the experimental
setup, including the datasets used and the benchmark comparisons. In Section 3, we present and analyze the results of these

experiments. Finally, Section 4 summarizes the key findings and offers the study’s conclusions.

2 Data and methods
2.1 Data and benchmarking

To ensure consistency with Gauch et al. (2021) and to enable a direct comparison, we followed their experimental setup.
Keeping the same experimental setup allowed us to compare their results against our proposed method, without having to
rerun their experiments. The importance of driving model improvement through community benchmarks has been previously
discussed in the machine learning and the hydrological community (Donoho, 2017; Nearing et al., 2021; Klotz et al., 2022;
Kratzert et al., 2024).

The experiments were conducted on 516 basins located across the contiguous United States, all of which are part of the
CAMELS-US dataset (Addor et al., 2017). From this dataset, we extracted 26 static attributes (see Table A3). The hourly
input data (see Table A1) were extracted from NLDAS-2 hourly products (Xia et al., 2012), while the target discharge data
was retrieved from the USGS Water Information system (USGS, 2016). Following standard machine learning practices, the
data was divided into three subsets. The training period spanned from 1990/10/01 to 2003/09/30, the validation period from
2003/10/01 to 2008/09/30, and the testing period from 2008/10/01 to 2018/09/30.
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2.2 MF-LSTM: multi-frequency LSTM

The concept of MF-LSTM comes from the principle that an LSTM cell has no inherent limitation for processing data at different
temporal frequencies. In contrast to process-based hydrological models, where one would not update a storage (say interflow)
with a Smm/h flux (say evapotranspiration) in one timestep and then with 8mm/day in another, an LSTM can accommodate an
equivalent updating scheme. For processing an input an LSTM always processes one step in a sequence. However, there is no
explicit assumption about the progress of time within one such step. Due to its time-dependent gating mechanisms, the LSTM
can learn to modulate how the cell states are updated, regardless of the temporal resolution of the inputs. Consequently, we can
leverage this property to handle multiple temporal frequencies within a single LSTM cell, processing older inputs at coarser
resolutions and more recent data at higher resolutions.

A concrete example of this approach is illustrated in Fig. 1a, using daily and hourly frequencies. In this example, our goal
is to predict hourly discharge. To capture long-term processes, we initially input a full year of high-resolution hourly data (e.g.
36524 = 8760 hourly timesteps). To avoid the computational burden and learning difficulties associated with processing long
sequences, the first n time steps were processed at a coarser resolution, reducing the length of the input sequence entering the
LSTM cell. The number of timesteps processed at each resolution is a model hyperparameter and can be determined through
hyperparameter tuning.

The example in Fig. 1a shows the case where the first n = 351 x 24 = 8424 timesteps, were aggregated into 351 blocks,
each containing the average of 24 hourly measurements. Given the normalization of the input and target data and the non-
mass-conservative structure of the LSTM, both the average or the sum of the hourly measurements can be used. The remaining
m = 14 % 24 = 336 timesteps were then processed at the original hourly resolution. By applying this method, we reduced the
original sequence length from 8760 to 351 + 336 = 687 timesteps, decreasing the amount of data to be processed by a factor
of 12.8.

To inform the LSTM about the frequency it should be operating on we added a flag channel. This has a value of zero for
the first 351 timesteps and a value of one for the remaining 336. Adding a flag to help the model distinguish between different
types of conditions is a common practice in machine learning, as it provides the model with additional context (Nearing et al.,
2022). For the LSTM specifically, the flag channel acts as an additional bias, that further regulates the gating mechanisms. Fig
1b shows the inclusion of the flag channel for the different frequencies.

Note that in the previous paragraph, we used predefined values to simplify the explanation and clarify the concept. However,
the method is by no means restricted to this setup, and its flexibility allows it to adjust the number of time steps processed at
each resolution and the order in which the different frequencies are applied. Additionally, the composition of the time series
can also be alternated from batch to batch during training or inference. Moreover, the method does not have a restriction to use
only two frequencies, and as we show in the next section, a weekly-daily-hourly frequency scheme can be handled without any
additional burden.

One of the main advantages stated by Gauch et al. (2021) about the MTS-LSTM architecture is its ability to handle a

variable number of inputs for each frequency, because different LSTM cells are used for each temporal frequency (see Fig.
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Figure 1. Data handling structure for MF-LSTM. al) The original sequence length consists of one year of hourly data: 8760 temporal steps.
a2) The first (365-14)*24 = 351*24 = 8424 timesteps are aggregated into 351 blocks, while the remaining 14%*24=336 timesteps are processed
in their original hourly frequency. a3) The final input series that will be processed by the LSTM cell consists of 351+336=687 timesteps.
b) In the case where the same number of inputs for each frequency is available, we add a flag as an additional channel to help the LSTM
identify each frequency c) In the case where a different number of inputs for each frequency is available, a fully connected linear layer (FC)

can be used to map the variable number of inputs of each frequency to a predefined number of channels.

B1). We propose the use of embedding networks as an alternative solution. By using one embedding network for each temporal
frequency, we can map different numbers of inputs into a shared dimension. This strategy allows us to separate the steps of
our pipeline. We use the LSTM only for sequence processing, and we use the embedding networks to prepare the original
information into the format/type that the LSTM cell requires. In the simplest case, the embedding networks could even be a
single linear layer, as will be used for the rest of this paper (see Fig. 1¢). We evaluated the embedding network with and without
the flag channel and observed comparable performance in both cases. This result indicates that the embedding network can
internally identify frequency information without the need for an additional flag channel. Therefore, we opted for the simpler
approach and excluded the extra channel.

Summarizing, the main distinction between MF-LSTM and sMTS-LSTM lies in MF-LSTM’s ability to handle a different
number of inputs for each temporal frequency, which gives an advantage in operational settings where different temporal
resolutions often have different available variables. Moreover, the primary difference between MF-LSTM and MTS-LSTM
lies in the simpler architecture of the former, which uses a single LSTM cell in contrast to one cell per frequency. This results

in a more parsimonious model that aligns closely in structure and usage with traditional single-frequency LSTM models.

3 Results and Discussion

3.1 Performance comparison

Our long-term goal, which goes beyond the scope of this study, is to implement an operational hourly hydrological forecasting
system using machine learning methods. The MF-LSTM method is a step toward achieving this, as it enables the compu-

tationally efficient simulation of hourly discharges, while allowing to handle a variable number of inputs at each temporal
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resolution—both requirements for our broader objective. Consequently, the results reported in this section will focus on two
aspects: the ability of the MF-LSTM to produce hourly discharge, and the ability to handle a variable number of inputs while
doing so.

Gauch et al. (2021) presented two experimental setups that address these aspects. Therefore, we ran these experiments as a
benchmark, to evaluate the performance of our method against their results. Both experiments evaluate the case in which one
is interested in simulating hourly discharges, and do so by processing part of the information in daily frequency and part of
it in hourly. More specifically, one year of data is processed, but only the last 14 days (336 hours) are processed in an hourly
frequency. The value of 336 hours was identified in the original study by hyperparameter tuning. In all cases, the results are
reported using an ensemble of 10 independent LSTM models, that were initialized using different random seeds. The final
simulation value is taken as the median streamflow across the 10 models for each timestep.

The first experiment evaluated the scenario where the same number of inputs (see Table A1) were used for both daily and
hourly processing. In this case, we can directly compare our model’s performance with the results reported by Gauch et al.
(2021) for the MTS-LSTM, sMTS-LSTM, and also what they refer to as the Naive approach. The Naive approach involves
running a standard LSTM exclusively on hourly data, with a sequence length of 4 320 hours (6 months). We can see from Fig.

2a that all the models present the same performance up to the second decimal, with a median NSE of 0.75.

a) b)
1001 — MF (median NSE: 0.75) 1.001 — MF (median NSE: 0.81)
MTS (median NSE: 0.75) MTS (median NSE: 0.81)
—— sMTS (median NSE: 0.75)
0.751 —— Naive (median NSE: 0.75) 0.75
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Figure 2. Cumulative NSE distribution of the different models, evaluating the prediction accuracy for hourly discharges along 516 basins
in the US. a) Case where the same number of variables is used during daily and hourly processing (see Table A1), b) Case where different

numbers of variables are used during daily and hourly processing (see Table A2).

The second experiment evaluated the scenario in which different numbers of inputs were used for the daily and hourly
steps (see Table A2). Specifically, the daily frequency incorporated 10 dynamic variables from the Daymet and Maurer forcing
datasets, while the hourly steps included 21 variables. Eleven of these variables were sourced from the NLDAS forcing at hourly

resolution, and the remaining 10 were a low-resolution rediscretization of the 10 daily variables into an hourly frequency (i.e.,
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the daily value was repeated 24 times). Consistently with Gauch et al. (2021), since the Maurer forcings range until 2008, the
results of this experiment are reported for the validation period. As shown in Figure 2b, the MF-LSTM achieves performance
comparable to that of the MTS-LSTM, both reporting a median NSE of 0.81. Comparisons with the sSsMTS and Naive models
are not possible for this experiment, as previously explained, because these models cannot accommodate different numbers of
variables for different frequencies.

The previous experiments showed that the MF-LSTM architecture can achieve state-of-the-art performance, fully compa-
rable with the MTS-LSTM and sMTS-LSTM architectures. The results show that a single LSTM cell can handle multiple
temporal frequencies at the same time. Moreover, the second experiment corroborates that a simple fully connected linear
layer can successfully encode different numbers of input variables into a predefined number of channels.

We also ran an additional experiment to evaluate the capacity of the model to handle more than two frequencies. Specifically,
we used a weekly-daily-hourly scheme. The first half of the year (182 days) was handled using a weekly aggregation. The next
five and a half months (169 days) at daily resolution, and the remaining 14 days used an hourly frequency. Our results showed
that the MF-LSTM is capable of handling this case, presenting a similar performance (see Fig. C1), and reducing the sequence
length from 687 to 531.

3.2 Computational efficiency

As shown in Fig.1a, one key advantage of processing older inputs at coarser temporal resolution than more recent ones is
the reduced computational cost, particularly when compared with feeding in the whole sequence length at a finer resolution
(e.g. hourly). This reduction in computational cost impacts not only training time but also memory usage. With long sequence
lengths, one might run out of GPU memory, or be forced to take alternative strategies such as reducing the batch size during
training and evaluation.

However, the total training time is influenced by external factors, such as differences in hidden size or batch size, which
are not directly related to the methods themselves. To minimize these external effects, we conducted an additional experiment
where we standardized the hidden size and batch size across all models and compared the average time needed to process
a batch. The results showed that MF-LSTM, MTS-LSTM, and sMTS-LSTM exhibited nearly identical efficiency, while the
Naive approach was approximately five times slower. For reference, training the MF-LSTM on a Tesla V100 GPU took around

seven hours.

4 Conclusions

In this study, we introduced the MF-LSTM architecture, designed to produce sub-daily (e.g. hourly) predictions at a moderate
computational cost, while giving the model access to long sequences of input data. Building on Gauch et al. (2021) our
method processes the input’s temporal sequence using different aggregations. Hence, it accounts for the fact that the effect
of the input’s temporal distribution diminishes the further we look back in time. This allows the MF-LSTM to predict hourly

discharges without the overhead of handling the entire sequence at a fine temporal scale.
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The ability of the LSTM to maintain performance while handling data from the past at lower resolutions highlights how the
LSTM cell is acting similarly to a process-based hydrological model, with a dissipative behavior when it comes to memory of
past forcings. This is a step towards understanding LSTM based predictions better they are gaining popularity for applications
in hydrology.

As high-resolution data becomes increasingly available in environmental sciences, traditional LSTM models will continue
to face challenges when trying to learn from these long sequence lengths. The approach we present here, with its simplicity
and computational efficiency, offers a practical solution. Areas like weather forecasting, where minute-resolution data is not
uncommon, might benefit from this type of model. Moreover, the possibility to combine multiple frequencies, like our weekly-
daily-hourly scheme, enables modelers to extend look-back periods. This may also be beneficial in other domains such as
groundwater, where long-term historical data is required to capture slow dynamic processes.

Our proposed embedding strategy opens the possibility to map different numbers of inputs into a shared dimension. This
flexibility not only simplifies the model architecture by allowing a single LSTM cell to handle diverse input configurations but
also enhances the model’s adaptability in operational settings, where the availability of input data may vary across time scales.
This overcomes the limitation previously stated in the SMTS-LSTM.

Furthermore, we demonstrate that a single LSTM cell can effectively manage processes operating at different time scales,
eliminating the need for separate LSTM cells for each time scale, plus transfer functions between their hidden states. This
results in a more parsimonious model that aligns more closely in structure and usage with traditional single-frequency LSTM
models, making the transition from single-frequency to multi-frequency LSTMs more intuitive for users.

Through experiments on 516 basins from the CAMELS-US dataset, the MF-LSTM demonstrated the same performance to
the MTS-LSTM and sMTS-LSTM models, indicating that the added simplicity and generality does not come at the expense
of predictive capability. Moreover, the new architecture presents a similar computation cost as the two previous options and
reduces the training time by a factor of 5 when compared to the Naive approach.

The fact that a single LSTM cell allows us to handle multiple frequencies could be attributed to the high similarities between
processes at different timescales (e.g., daily and hourly). The LSTM architecture takes advantage of these similarities, along
with its ability to regulate gates based on the current context, enabling it to effectively process multiple frequencies. By using
a single LSTM cell, we can leverage the additional information content encoded in our data.

The hyperparameters of the model were adopted from Gauch et al. (2021), who conducted hyperparameter tuning. We
acknowledge that transferring these parameters across different architectures may not guarantee optimal model performance.
However, the primary objective of this technical note is to introduce the new architecture. Furthermore, we demonstrate that,

even with the given hyperparameters, the proposed model achieves performance comparable to the current state-of-the-art.



220 Appendix A: Additional information of experimental design

The following tables present the variables used in the experiments associated with this study. Table A1 and Table A2 present
the variables used in the first and second experiments respectively. The third and fourth columns of each table indicate if the
variable was used in the daily frequency, hourly frequency or both. Table A3 names the 26 static attributes used as additional

input in models.

Table A1l. Dynamic input variables used in first experiment, where the same number of variables is used for the daily and hourly frequency.

Variable Name Forcing Daily frequency | Hourly frequency
convective_fraction NLDAS Hourly v v
longwave_radiation NLDAS Hourly v v
potential_energy NLDAS Hourly v v
potential_evaporation | NLDAS Hourly v v
pressure NLDAS Hourly v v
shortwave_radiation NLDAS Hourly v v
specific_humidity NLDAS Hourly v v
temperature NLDAS Hourly v v
total_precipitation NLDAS Hourly v v
wind_u NLDAS Hourly v v
wind_v NLDAS Hourly v v




Table A2. Dynamic input variables used in second experiment, where different number of variables is used for the daily and hourly frequency.

Variable Name Forcing Daily frequency | Hourly frequency | Note
prep(mm/day) Daymet daily v v *LRR
srad(W/m2) Daymet daily v v *LRR
tmax(C) Daymet daily v v *LRR
tmin(C) Daymet daily v v *LRR
vp(Pa) Daymet daily v v *LRR
prep(mm/day Maurer daily v v *LRR
srad(W/m?2) Maurer daily v v *LRR
tmax(C Maurer daily v v *LRR
tmin(C) Maurer daily v v *LRR
vp(Pa) Maurer daily v v *LRR
convective_fraction NLDAS Hourly - v
longwave_radiation NLDAS Hourly - v

potential_energy NLDAS Hourly - v
potential_evaporation | NLDAS Hourly - v

pressure NLDAS Hourly - v
shortwave_radiation NLDAS Hourly - v
specific_humidity NLDAS Hourly - v

temperature NLDAS Hourly - v
total_precipitation NLDAS Hourly - v

wind_u NLDAS Hourly - v

wind_v NLDAS Hourly - v

*LRR: low-resolution rediscretization is done when the original daily value is used in hourly frequency. Therefore, the

original daily value is repeated 24 times.

Table A3. Name of the 26 static attributes used in the experiments

elev_mean

slope_mean

area_gages?2

frac_forest

lai_max

lai_diff

gvf_max

gvt_diff

soil_depth_pelletier

soil_depth_statsgo

soil_porosity

soil_conductivity

max_water_content

sand_frac

silt_frac

clay_frac

carbonate_rocks_frac

geol_permeability

p_mean

pet_mean

aridity

frac_snow

high_prec_freq

high_prec_dur

low_prec_freq

low_prec_dur

10




225 Appendix B: Structure of MTS-LSTM model architecture
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Figure B1. Illustration of the MTS-LSTM architecture that uses one distinct LSTM per timescale. In the depicted example, the daily and
hourly input sequence lengths are T® = 365 and T! = 72 (we chose this value for the sake of a tidy illustration; the benchmarked model uses
™ = 336). In the sSMTS-LSTM model (i.e., without distinct LSTM branches), FCc and FCj, are identity functions, and the two branches
(including the fully connected output layers FC? and FCP) share their model weights.

Source: This figure and its description were taken from Gauch et al. (2021).
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Appendix C: Additional results
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Figure C1. Comparison of cumulative NSE distributions for different frequency sequences. The daily-hourly experiment includes 10 distri-

butions, each corresponding to an ensemble member generated through different random initializations. The average of the 10 median NSE

values is 0.71. In contrast, the weekly-daily-hourly experiment consists of a single simulation, yielding a median NSE of 0.72.
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