Preprints
https://doi.org/10.5194/egusphere-2024-3182
https://doi.org/10.5194/egusphere-2024-3182
29 Oct 2024
 | 29 Oct 2024

Identification and Quantification of CH4 Emissions from Madrid Landfills using Airborne Imaging Spectrometry and Greenhouse Gas Lidar

Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Abstract. Methane (CH4), alongside carbon dioxide (CO2), is a key driver of anthropogenic climate change. Reducing CH4 is crucial for short-term climate mitigation. Waste-related activities, such as landfills, are a major CH4 source, even in developed countries. Atmospheric concentration measurements using remote sensing offer a powerful way to quantify these emissions. We study waste facilities near Madrid, Spain, where satellite data indicated high CH4 emissions. For the first time, we combine passive imaging (MAMAP2DL) and active lidar (CHARM-F) remote sensing aboard the German research aircraft HALO, supported by in situ instruments, to quantify CH4 emissions. Using the CH4 column data and ECMWF-ERA5 model wind information validated by airborne measurements, we estimate landfill emissions through a cross-sectional mass balance approach. Strong emission plumes are traced up to 20 km downwind on the 4th August 2022, with the highest CH4 column anomalies observed over active landfill areas in the vicinity of Madrid, Spain. Total emissions are estimated at ~13 th-1. Single co-located plume crossings from both instruments agree well within 1.2 th-1 (or 13 %). Flux errors range from ~25 to 40 %, mainly due to boundary layer and wind speed variability. This case study not only showcases the capabilities of applying a simple but fast cross-sectional mass balance approach, as well as its limitations due to challenging atmospheric boundary layer conditions, but also demonstrates the, to our knowledge, first successful use of both active and passive airborne remote sensing to quantify methane emissions from hot spots and independently verify their emissions.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

05 Nov 2025
Identification and quantification of CH4 emissions from Madrid landfills using airborne imaging spectrometry and greenhouse gas lidar
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
Atmos. Chem. Phys., 25, 14669–14702, https://doi.org/10.5194/acp-25-14669-2025,https://doi.org/10.5194/acp-25-14669-2025, 2025
Short summary
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3182', Anonymous Referee #1, 10 Jan 2025
    • AC1: 'Reply on RC1', Sven Krautwurst, 11 Apr 2025
  • RC2: 'Comment on egusphere-2024-3182', Anonymous Referee #2, 03 Feb 2025
    • AC2: 'Reply on RC2', Sven Krautwurst, 11 Apr 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3182', Anonymous Referee #1, 10 Jan 2025
    • AC1: 'Reply on RC1', Sven Krautwurst, 11 Apr 2025
  • RC2: 'Comment on egusphere-2024-3182', Anonymous Referee #2, 03 Feb 2025
    • AC2: 'Reply on RC2', Sven Krautwurst, 11 Apr 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Sven Krautwurst on behalf of the Authors (07 May 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 May 2025) by Eduardo Landulfo
ED: Publish as is (25 Jun 2025) by Eduardo Landulfo
AR by Sven Krautwurst on behalf of the Authors (04 Jul 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

05 Nov 2025
Identification and quantification of CH4 emissions from Madrid landfills using airborne imaging spectrometry and greenhouse gas lidar
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
Atmos. Chem. Phys., 25, 14669–14702, https://doi.org/10.5194/acp-25-14669-2025,https://doi.org/10.5194/acp-25-14669-2025, 2025
Short summary
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Viewed

Total article views: 1,503 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,216 217 70 1,503 30 50
  • HTML: 1,216
  • PDF: 217
  • XML: 70
  • Total: 1,503
  • BibTeX: 30
  • EndNote: 50
Views and downloads (calculated since 29 Oct 2024)
Cumulative views and downloads (calculated since 29 Oct 2024)

Viewed (geographical distribution)

Total article views: 1,496 (including HTML, PDF, and XML) Thereof 1,496 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 05 Nov 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Anomalously high CH4 emissions from landfills in Madrid, Spain, have been observed by satellite measurements in recent years. Our investigations of these waste facilities using passive and active airborne remote sensing measurements confirm these high emission rates with values of up to 13 th-1 during the overflight and show excellent agreement between the two techniques. A large fraction of the emissions is attributed to active landfill sites.
Share