Preprints
https://doi.org/10.5194/egusphere-2024-3182
https://doi.org/10.5194/egusphere-2024-3182
29 Oct 2024
 | 29 Oct 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Identification and Quantification of CH4 Emissions from Madrid Landfills using Airborne Imaging Spectrometry and Greenhouse Gas Lidar

Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Abstract. Methane (CH4), alongside carbon dioxide (CO2), is a key driver of anthropogenic climate change. Reducing CH4 is crucial for short-term climate mitigation. Waste-related activities, such as landfills, are a major CH4 source, even in developed countries. Atmospheric concentration measurements using remote sensing offer a powerful way to quantify these emissions. We study waste facilities near Madrid, Spain, where satellite data indicated high CH4 emissions. For the first time, we combine passive imaging (MAMAP2DL) and active lidar (CHARM-F) remote sensing aboard the German research aircraft HALO, supported by in situ instruments, to quantify CH4 emissions. Using the CH4 column data and ECMWF-ERA5 model wind information validated by airborne measurements, we estimate landfill emissions through a cross-sectional mass balance approach. Strong emission plumes are traced up to 20 km downwind on the 4th August 2022, with the highest CH4 column anomalies observed over active landfill areas in the vicinity of Madrid, Spain. Total emissions are estimated at ~13 th-1. Single co-located plume crossings from both instruments agree well within 1.2 th-1 (or 13 %). Flux errors range from ~25 to 40 %, mainly due to boundary layer and wind speed variability. This case study not only showcases the capabilities of applying a simple but fast cross-sectional mass balance approach, as well as its limitations due to challenging atmospheric boundary layer conditions, but also demonstrates the, to our knowledge, first successful use of both active and passive airborne remote sensing to quantify methane emissions from hot spots and independently verify their emissions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Status: open (until 02 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

Viewed

Total article views: 300 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
211 75 14 300 6 5
  • HTML: 211
  • PDF: 75
  • XML: 14
  • Total: 300
  • BibTeX: 6
  • EndNote: 5
Views and downloads (calculated since 29 Oct 2024)
Cumulative views and downloads (calculated since 29 Oct 2024)

Viewed (geographical distribution)

Total article views: 292 (including HTML, PDF, and XML) Thereof 292 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Dec 2024
Download
Short summary
Anomalously high CH4 emissions from landfills in Madrid, Spain, have been observed by satellite measurements in recent years. Our investigations of these waste facilities using passive and active airborne remote sensing measurements confirm these high emission rates with values of up to 13 th-1 during the overflight and show excellent agreement between the two techniques. A large fraction of the emissions is attributed to active landfill sites.