Preprints
https://doi.org/10.5194/egusphere-2024-3165
https://doi.org/10.5194/egusphere-2024-3165
06 Nov 2024
 | 06 Nov 2024
Status: this preprint is open for discussion.

Uncertainties in carbon emissions from land use and land cover change in Indonesia

Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt

Abstract. Indonesia is currently one of the three largest contributors of carbon emissions from land use and land cover change (LULCC) globally, together with Brazil and the Democratic Republic of the Congo. However, until recently, there was only limited reliable data available on LULCC across Indonesia, leading to a lack of agreement on drivers, magnitude, and trends in carbon emissions between different estimates. Accurate LULCC should improve robustness and reduce the uncertainties of carbon dioxide (CO2) emissions from Land Use Change (ELUC) estimation. Here, we assess several cropland datasets that are used to estimate ELUC in Dynamic Global Vegetation Models (DGVMs) and Bookkeeping models (BKMs). Available cropland datasets are generally categorized as either census-based such as the Food and Agricultural Organization (FAO) annual statistical dataset, or satellite-based such as the Mapbiomas dataset, which is derived from Landsat Satellite images. Our results show that census-based and satellite-based estimates have little agreement on temporal variability and cropland area changes. In some islands, they show spatial similarity, but differences appear in the main islands such as Kalimantan, Sumatra and Java. These differences lead to spatio-temporal uncertainty in carbon emissions. The different land cover forcings (census-based vs satellite-based) in a single model (JULES-ES) result in ELUC uncertainties of about 0.08 [0.06 to 0.11] PgC/yr. Furthermore, we found that uncertainties in ELUC estimates are also due to differences in the carbon cycle models in DGVMs, as DGVMs driven by the same land cover dataset show differences in ELUC estimates of 0.12 ± 0.02 PgC/yr with 95 % confidence level and range [-0.04 to 0.35] PgC/yr. This is consistent with other product such as BKMs that estimates 0.14 [0.12 to 0.15] PgC/yr with both steady trend. We also compare emissions with those from the National Greenhouse Gas Inventory (NGHGI) product. The NGHGI estimates (based on BUR3; periodic official government report on Greenhouses Gas to UNFCCC) have much lower carbon emissions (0.06 ± 0.06 PgC/yr), though with an increasing trend. These numbers double when we include emissions from peat fire and peat drainage: the DGVM ensemble indicates emissions of 0.23 ± 0.05 PgC/yr and BKMs indicate emissions of 0.24 [0.22–0.25] PgC/yr. In contrast, emissions based on the Indonesian NGHGI remain much lower (BUR2: 0.18±0.07 PgC/yr BUR3: 0.13 ± 0.10 PgC/yr). Furthermore, emission peaks occur in year of moderate-to-strong El Nino events. Several improvements might reduce uncertainties in carbon emissions from LULCC in Indonesia, such as: combination of satellite-based dataset with census-based dataset, inclusion of peat-related emissions in DGVMs and potentially explicit inclusion of palm oil in the models as this is a major crop in Indonesia. Overall, the analysis shows that carbon emissions have no decreasing trend in Indonesia, Therefore, deforestation and forest fire prevention remain vital for Indonesia.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt

Status: open (until 25 Dec 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-3165', Francesco N. Tubiello, 20 Nov 2024 reply
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt

Data sets

Trends and Drivers of Terrestrial Sources and Sinks of Carbon Dioxide: An Overview of the TRENDY Project Stephen Sitch, Michael O’Sullivan, Eddy Robertson, Pierre Friedlingstein, Clément Albergel, Peter Anthoni, Almut Arneth, Vivek K. Arora, Ana Bastos, Vladislav Bastrikov, Nicolas Bellouin, Josep G. Canadell, Louise Chini, Philippe Ciais, Stefanie Falk, Ian Harris, George Hurtt, Akihiko Ito, Atul K. Jain, Matthew W. Jones, Fortunat Joos, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Erik Kluzek, Jürgen Knauer, Peter J. Lawrence, Danica Lombardozzi, Joe R. Melton, Julia E. M. S. Nabel, Naiqing Pan, Philippe Peylin, Julia Pongratz, Benjamin Poulter, Thais M. Rosan, Qing Sun, Hanqin Tian, Anthony P. Walker, Ulrich Weber, Wenping Yuan, Xu Yue, and Sönke Zaehle https://doi.org/10.1029/2024GB008102

Mapbiomas Indonesia Auriga Foundation https://mapbiomas.nusantara.earth

Land-Use Harmonization (LUH2) George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang https://luh.umd.edu/

Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt

Viewed

Total article views: 134 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
93 36 5 134 1 1
  • HTML: 93
  • PDF: 36
  • XML: 5
  • Total: 134
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 06 Nov 2024)
Cumulative views and downloads (calculated since 06 Nov 2024)

Viewed (geographical distribution)

Total article views: 135 (including HTML, PDF, and XML) Thereof 135 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
Indonesia is 3 world's highest carbon emitter from land use change. However, there are uncertainties of the carbon emission of Indonesia that can be reduced with satellite-based datasets. But later, we found that the uncertainties are also caused by the difference of carbon pool in various models. Our best estimation of carbon emissions from land use change in Indonesia is 0.12 ± 0.02 PgC/yr with steady trend. This double when include peat fire and peat drainage emissions.