Preprints
https://doi.org/10.5194/egusphere-2024-2889
https://doi.org/10.5194/egusphere-2024-2889
10 Oct 2024
 | 10 Oct 2024

Assessing soil fertilization effects using time-lapse electromagnetic induction

Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller

Abstract. Adding mineral fertilizers and mineral nutrient is a common practice in conventional farming and fundamental to maintain optimal yield and crop quality, whereby nitrogen is the most applied fertilizer often used excessively, leading to adverse environmental impacts. To assist farmers in optimal fertilization and crop management, non-invasive geophysical methods can provide knowledge about the spatial and temporal distributions of nutrients in the soil. In recent years, electromagnetic induction (EMI) is widely used for field characterization, to delineate soil units and management zones or to estimate soil properties and states. Additionally, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) have been used in local studies to measure changes of soil properties. Unfortunately, the measured geophysical signals are confounded by horizontal and vertical changes of soil states and parameters and the single contributions of those states and parameters are not easy to disentangle. Within fields, and also between fields, fertilization management might vary in space and time, and therefore, the differences in pore fluid conductivity caused directly by fertilization, or indirectly by different crop performance, makes the interpretation of large-scale geophysical survey over field borders complicated. To study the direct effect of mineral fertilization and its effects on the soil electrical conductivity, a field experiment was performed on 21 bare soil plots with seven different fertilization treatments. As fertilizers, calcium ammonium nitrate (CAN) and potassium chloride (KCl) were chosen and applied in three dosages. Soil water content, soil temperature, and bulk electrical conductivity were recorded permanently over 450 days. Additionally, 20 EMI, 7 GPR, and 9 ERT surveys were performed and at days of ERT measurements soil samples for nitrate and reference soil electrical conductivity measurements were taken. The results showed that the commonly used CAN application dosage did not impact the geophysical signals significantly. On the other hand, EMI and ERT were able to trace back the temporal changes in nitrate concentrations in the soil profile over more than one year. On the other hand, the results also showed, that both techniques were not able to trace the nitrate concentrations in the very shallow soil layer of 0–10 cm. Irrespectively of the low impact of fertilization on the geophysical signal, the results indicated that past fertilization practices cannot be neglected in EMI studies, especially if surveys are performed over large areas with different fertilization practices or crop grown with different fertilizer demands or uptake.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2889', Triven Koganti, 15 Nov 2024
    • AC1: 'Reply on RC1', Anja Klotzsche, 08 Dec 2024
  • RC2: 'Comment on egusphere-2024-2889', Anonymous Referee #2, 21 Nov 2024
    • AC2: 'Reply on RC2', Anja Klotzsche, 08 Dec 2024
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller

Viewed

Total article views: 208 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
139 45 24 208 31 2 4
  • HTML: 139
  • PDF: 45
  • XML: 24
  • Total: 208
  • Supplement: 31
  • BibTeX: 2
  • EndNote: 4
Views and downloads (calculated since 10 Oct 2024)
Cumulative views and downloads (calculated since 10 Oct 2024)

Viewed (geographical distribution)

Total article views: 203 (including HTML, PDF, and XML) Thereof 203 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Dec 2024
Download
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distribution in the soil. We utilize in a long-term field study geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical responds with soil samples and soil sensor data. Especially, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.