Preprints
https://doi.org/10.5194/egusphere-2024-2713
https://doi.org/10.5194/egusphere-2024-2713
10 Oct 2024
 | 10 Oct 2024

Investigating the response of China’s surface ozone concentration to the future changes of multiple factors

Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao

Abstract. Climate change and associated human response are supposed to greatly alter surface ozone (O3), an air pollutant generated through photochemical reactions involving both anthropogenic and biogenic precursors. However, a comprehensive evaluation of China’s O3 response to these multiple changes has been lacking. We present a modelling framework under Shared Socioeconomic Pathways (SSP2-45), incorporating future changes in local and foreign anthropogenic emissions, meteorological conditions, and BVOCs emissions. From the 2020s to 2060s, daily maximum 8-hour average (MDA8) O3 concentration is simulated to decline by 7.7 ppb in the warm season (April–September) and 1.1 ppb in non-warm season (October–March) over the country, with a substantial reduction in exceedances of national O3 standards. Notably, O3 decreases are more pronounced in developed regions such as BTH, YRD, and PRD during warm season, with reductions of 9.7, 14.8, and 12.5 ppb, respectively. Conversely, in non-warm season, the MDA8 O3 in BTH and YRD will increase by 5.4 and 3.4 ppb, partly attributed to reduced NOx emissions and thereby weakened titration effect. O3 pollution will thus expand into the non-warm season in the future. Sensitivity analyses reveal that local emission change will predominantly influence future O3 distribution and magnitude, with contributions from other factors within ±25 %. Furthermore, the joint impact of multiple factors on O3 reduction will be larger than the sum of individual factors, due to changes in the O3 formation regime. This study highlights the necessity of region-specific emission control strategies to mitigate potential O3 increases during non-warm season and under climate penalty.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

28 Feb 2025
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025,https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We develop a modeling framework to predict future ozone concentrations (till 2060s) in China...
Share