1 Supplement of

2	Investigating the response of China's surface ozone concentration to
3	the future changes of multiple factors
4	Jinya Yang ¹ , Yutong Wang ¹ , Lei Zhang ^{1, 2} , Yu Zhao ^{1, 2*}
5	
6 7	1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Rd., Nanjing, Jiangsu 210023, China
8	2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and
9	Equipment Technology (CICAEET), Nanjing University of Information Science and
10	Technology, Jiangsu 210044, China
11	
12	*Corresponding author: Yu Zhao
13	Phone: 86-25-89680650; email: <u>yuzhao@nju.edu.cn</u>
14	
15	

16 Number of tables: 2 Number of figures: 7

17 **Table list**

Table S1 Statistical metrics for comparison between the observed and simulated monthly average meteorological variables and MDA8 O₃ in 2020. OBS is mean of observation, SIM is mean of simulation, and Bias is mean bias between SIM and OBS. R, NMB, NME and IOA refers to the correlation coefficient, normalized mean bias, normalized mean error and index of agreement between SIM and OBS, respectively.

Table S2 Comparison of BVOCs estimates between this study and previous estimationsfor 2020.

25 **Figure list**

Figure S1 The NO_x and NMVOCs emissions in 2020 and 2060 for the surrounding

areas within the modelling domain but excluding Chinese mainland (SURR), Chinese

28 mainland (CHN), as well as the three regions. Data illustrated are obtained from MEIC

29 for 2020 and DPEC for 2060 within Chinese mainland, and SSP dataset for the rest.

Figure S2 Spatial distribution of the observation (circles) and simulation (shaded) of monthly average MDA8 O₃ in 2020 across China.

Figure S3 The spatial distribution of BVOCs emissions of the 2020s and the difference
between the 2060s and 2020s.

Figure S4 The distribution of O₃ seasons across China and the three regions, and the top six months with the highest levels of O₃ pollution are covered by darker color. Note that there is discrepancy between simulation and observation in PRD for 2020s. February and March are simulated as two of the six most polluted months, while the observation indicates April and May.

Figure S5 The emission reduction rates for the two precursors during 2020 and 2060over China and the three regions.

Figure S6 Simulation and projection of hourly O_3 and O_x in the 2020s and 2060s over China and the three regions.

Figure S7 Projected seasonal O₃ exceedance over the east of China in the 2020s and
2060s, and the exceedance changes when the four factors at 2060s level.

Tables

Table S1 Statistical metrics for comparison between the observed and simulated
monthly average meteorological variables and MDA8 O₃ in 2020. OBS is mean of
observation, SIM is mean of simulation, and Bias is mean bias between SIM and OBS. R,
NMB, NME and IOA refers to the correlation coefficient, normalized mean bias,
normalized mean error and index of agreement between SIM and OBS, respectively.

Variables		OBS	OBS SIM Bias R NMB		NME	IOA		
T2 (°C) WS (m s ⁻¹)		13.21	13.21 12.53 -0.69		0.96	-5.20 %	17.65 %	0.98
		2.60	4.02	1.41	0.51	54.21 %	60.04 %	0.57
W	D (°)	175.75	174.78	-0.97	0.51	-0.55 %	18.40 %	0.72
RH (%)		65.25	66.17	0.92	0.78	1.41 %	12.78 %	0.88
MDA8	Warm	57.45	8.11	8.11	0.71	14.12 %	16.33 %	0.74
O ₃ (ppb)	Non- warm	38.67	4.21	4.21	0.32	10.90 %	25.48 %	0.49
	season							

Species	Period	Annual emission (Tg)	Reference		
	2020s	33.55	This study		
	2015-2019	29.28±0.91	Ma et al. (2021)		
Total DVOCa	2015-2019	31.42±0.95	Ma et al. (2021)		
Iotal BVOCS	2008-2018	54.60	Li et al. (2020)		
	2001-2016	34.27	Wang et al. (2021)		
	2017	23.54	Wu et al. (2020)		
	2020s	21.08	This study		
	2015-2019	13.88±0.57	Ma et al. (2021)		
Iconnono	2015-2019	14.29 ± 0.54	Ma et al. (2021)		
Isoprene	2008-2018	29.30	Li et al. (2020)		
	2001-2016	15.94	Wang et al. (2021)		
	2017	13.30	Wu et al. (2020)		
	2020s	3.30	This study		
Tomonos	2015-2019	5.28±0.12	Ma et al. (2021)		
Terpenes	2015-2019	4.77±0.11	Ma et al. (2021)		
	2017	3.09	Wu et al. (2020)		

53 Table S2 Comparison of BVOCs estimates between this study and previous estimations.

55 Figures

Figure S1 The NO_x and NMVOCs emissions in 2020 and 2060 for the surrounding areas within the modelling domain but excluding Chinese mainland (SURR), Chinese mainland (CHN), as well as the three regions. Data illustrated are obtained from MEIC

59 for 2020 and DPEC for 2060 within Chinese mainland, and SSP dataset for the rest.

62 Figure S2 Spatial distribution of the observation (circles) and simulation (shaded) of

monthly average MDA8 O₃ in 2020 across China.

66 Figure S3 The spatial distribution of BVOCs emissions of the 2020s and the difference

- 67 between the 2060s and 2020s.

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
CHN	2020s												
	2060s												
ртц	2020s												
ып	2060s												
VDD	2020s												
TRD	2060s												
PRD	2020s		56.0	56.5						59.9	71.7	59.7	
	2060s												

Figure S4 The distribution of O₃ seasons across China and the three regions, and the top six months with the highest levels of O₃pollution are covered by darker color. Note that there is discrepancy between simulation and observation in PRD for 2020s. February and March are simulated as two of the six most polluted months, while the observation indicates April and May.

Figure S5 The emission reduction rates for the two precursors during 2020 and 2060over China and the three regions.

Figure S6 Simulation and projection of hourly O_3 and O_x in the 2020s and 2060s over China and the three regions.

Figure S7 Projected seasonal O_3 exceedance over the east of China in the 2020s and

83 2060s, and the exceedance changes when the four factors at 2060s level.

85 References

- 86 Li, L., Yang, W., Xie, S., and Wu, Y.: Estimations and uncertainty of biogenic volatile
- organic compound emission inventory in China for 2008-2018, Science of the Total
 Environment, 733, 139301, 10.1016/j.scitotenv.2020.139301, 2020.
- 89 Ma, M., Gao, Y., Ding, A., Su, H., Liao, H., Wang, S., Wang, X., Zhao, B., Zhang, S.,
- 90 Fu, P., Guenther, A. B., Wang, M., Li, S., Chu, B., Yao, X., and Gao, H.: Development
- and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green
- 92 Spaces in China, Environmental Science & Technology, 10.1021/acs.est.1c06170, 2021.
- 93 Wang, H., Wu, Q., Guenther, A. B., Yang, X., Wang, L., Xiao, T., Li, J., Feng, J., Xu,
- 94 Q., and Cheng, H.: A long-term estimation of biogenic volatile organic compound
- 95 (BVOC) emission in China from 2001–2016: the roles of land cover change and climate
- variability, Atmospheric Chemistry and Physics, 21, 4825-4848, 10.5194/acp-21-4825-
- 97 2021, 2021.
- 98 Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, K., Ou, Y., Qian, Y., Shao,
- 99 P., and Lu, S.: Estimation of biogenic VOC emissions and their corresponding impact
- 100 on ozone and secondary organic aerosol formation in China, Atmospheric Research,
- 101 231, 10.1016/j.atmosres.2019.104656, 2020.