Preprints
https://doi.org/10.5194/egusphere-2024-2604
https://doi.org/10.5194/egusphere-2024-2604
01 Oct 2024
 | 01 Oct 2024

Measurement report: Characterization of Aerosol Hygroscopicity over Southeast Asia during the NASA CAMP2Ex Campaign

Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian

Abstract. This study characterizes the spatial and vertical nature of aerosol hygroscopicity in Southeast Asia and relates it to aerosol composition and sources. Aerosol hygroscopicity via the light scattering hygroscopic growth factor, f(RH), is calculated from the amplification of PM5 aerosol (Dp < 5 μm) scattering measurements from < 40 % to 82 % relative humidity during the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) between August to October 2019 over the northwest tropical Pacific. Median f(RH) is relatively low (1.26 with lower to upper quartiles of 1.05 to 1.43) like polluted environments, due to the dominance of the mixture of organic carbon and elemental carbon. The f(RH) is lowest  due to smoke from the Maritime Continent (MC) during its peak biomass burning season, coincident with high carbon monoxide concentrations (> 0.25 ppm) and pronounced levels of accumulation mode particles and organic mass fractions. The highest f(RH) values are linked to coarser particles from the West Pacific and aged biomass burning particles in the region farthest away from the MC, where f(RH) values are lower than typical polluted marine environments. Convective transport and associated cloud processing in these regions decrease and increase hygroscopicity aloft in cases with transported air masses exhibiting increased organic and sulfate mass fractions, respectively. An evaluation of a global chemical transport model (CAM-chem) for cases of vertical transport showed the underrepresentation of organics resulting in overestimated modeled aerosol hygroscopicity. These findings on aerosol hygroscopicity can help to improve aerosol representation in models and the understanding of cloud formation.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

03 Jun 2025
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025,https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2604', Anonymous Referee #1, 01 Nov 2024
    • AC1: 'Reply on RC1', Genevieve Rose Lorenzo, 12 Jan 2025
  • RC2: 'Comment on egusphere-2024-2604', Anonymous Referee #2, 01 Dec 2024
    • AC2: 'Reply on RC2', Genevieve Rose Lorenzo, 12 Jan 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2604', Anonymous Referee #1, 01 Nov 2024
    • AC1: 'Reply on RC1', Genevieve Rose Lorenzo, 12 Jan 2025
  • RC2: 'Comment on egusphere-2024-2604', Anonymous Referee #2, 01 Dec 2024
    • AC2: 'Reply on RC2', Genevieve Rose Lorenzo, 12 Jan 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Genevieve Rose Lorenzo on behalf of the Authors (05 Feb 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (01 Mar 2025) by Paul Zieger
AR by Genevieve Rose Lorenzo on behalf of the Authors (07 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (10 Mar 2025) by Paul Zieger
AR by Genevieve Rose Lorenzo on behalf of the Authors (10 Mar 2025)

Journal article(s) based on this preprint

03 Jun 2025
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025,https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian

Data sets

CAM-chem Model Outputs used in "Measurement Report: Characterization of Aerosol Hygroscopicity over Southeast Asia during the NASA CAMP2Ex Campaign" Simone Tilmes and Jun Zhang https://doi.org/10.6084/m9.figshare.26755936.v2

Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian

Viewed

Total article views: 769 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
310 102 357 769 58 22 32
  • HTML: 310
  • PDF: 102
  • XML: 357
  • Total: 769
  • Supplement: 58
  • BibTeX: 22
  • EndNote: 32
Views and downloads (calculated since 01 Oct 2024)
Cumulative views and downloads (calculated since 01 Oct 2024)

Viewed (geographical distribution)

Total article views: 739 (including HTML, PDF, and XML) Thereof 739 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Aug 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Share