Preprints
https://doi.org/10.5194/egusphere-2024-2548
https://doi.org/10.5194/egusphere-2024-2548
30 Aug 2024
 | 30 Aug 2024

Turbulent dissipation from AMAZOMIX off the Amazon shelf along internal tides paths

Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo

Abstract. The Amazon shelf-break is a key region of the ocean where strong internal tides (ITs) are generated, which may have a key role to play on both Climate and Ecosystem, via its vertical mixing. AMAZOMIX survey (2021) collected microstructure and hydrographic (ADCP/CTD-O2) profiles to quantify mixing, associated processes and their impact on marine ecosystems. Measurements are obtained over M2 tidal period (12 h) inside and outside of both the ITs generation sites and propagation beams, respectively at mode-1 distances (90 km and 210 km) from the shelf-break to evaluate the IT impact on mixing.

Hydrography analysis showed strong step-like characteristics (~20–40 m thick) and vertical displacements (20–60 m) triggered by ITs, as well as the signatures of high modes up to 5–6 on generation sites and IT pathways.

The results of the microstructure analysis coupled with those of the hydrography revealed important mixing associated with a competition of processes between the semidiurnal shear of ITs and the baroclinic shear of the mean current (BC). Closer to the generation sites, mixing is stronger within [10-6,10-4] W.kg-1, with a greater contribution (~65 %) from ITs shear than BC shear. It is reduced but nevertheless considerable between [10-8, 10-6] W.kg-1 along the IT pathways, owing to equal contributions from ITs and BC shear. At a distance of ~225 km, mixing was still higher within [10-7,10-6] W.kg-1 because of the increased contribution (~65 %) of ITs shear, where IT beams may intersect and interact with background circulation. Mixing in no-tidal fields was fairly minimal ([10-8,10-7] W.kg-1), owing to a minor contribution (~50.4 %) of BC shear from the North Brazil Current.

Finally, the nutrient flux estimations showed that ITs mixing could reach the surface (by a large tidal diffusivity of [10-4,10-1] m-2.s-1). This resulted in high vertical fluxes of nitrate ([10-2, 10-0] mmol N m-2.s-1) and phosphate ([10-3, 10-1] mmol P m-2.s-1), which can stimulate chlorophyll production, biodiversity and cool surface water, so influencing the whole ecosystem and climate in this river-ocean continuum region. This study provides a guide for the mixing parameterization in future numerical simulation (e.g., in physical-biogeochemical coupled models) in the Amazon region in order to include the impact of the IT turbulence on the whole ecosystem (i.e., from physics to biological production).

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

30 Jul 2025
Turbulent dissipation along contrasting internal tide paths off the Amazon shelf from AMAZOMIX
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Fernand Assene, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025,https://doi.org/10.5194/os-21-1589-2025, 2025
Short summary
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2548', Anonymous Referee #1, 10 Sep 2024
    • AC1: 'Reply on RC1', Fabius Kouogang, 23 Dec 2024
  • RC2: 'Comment on egusphere-2024-2548', Anonymous Referee #2, 28 Oct 2024
    • AC2: 'Reply on RC2', Fabius Kouogang, 23 Dec 2024
  • RC3: 'Comment on egusphere-2024-2548', Anonymous Referee #3, 14 Nov 2024
    • AC3: 'Reply on RC3', Fabius Kouogang, 23 Dec 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2548', Anonymous Referee #1, 10 Sep 2024
    • AC1: 'Reply on RC1', Fabius Kouogang, 23 Dec 2024
  • RC2: 'Comment on egusphere-2024-2548', Anonymous Referee #2, 28 Oct 2024
    • AC2: 'Reply on RC2', Fabius Kouogang, 23 Dec 2024
  • RC3: 'Comment on egusphere-2024-2548', Anonymous Referee #3, 14 Nov 2024
    • AC3: 'Reply on RC3', Fabius Kouogang, 23 Dec 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Fabius Kouogang on behalf of the Authors (12 Jan 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (13 Jan 2025) by Ilker Fer
RR by Anonymous Referee #2 (16 Jan 2025)
RR by Anonymous Referee #1 (30 Jan 2025)
ED: Reconsider after major revisions (04 Feb 2025) by Ilker Fer
AR by Fabius Kouogang on behalf of the Authors (31 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (31 Mar 2025) by Ilker Fer
RR by Anonymous Referee #1 (03 Apr 2025)
ED: Publish subject to minor revisions (review by editor) (15 Apr 2025) by Ilker Fer
AR by Fabius Kouogang on behalf of the Authors (24 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (28 Apr 2025) by Ilker Fer
AR by Fabius Kouogang on behalf of the Authors (07 May 2025)  Manuscript 

Journal article(s) based on this preprint

30 Jul 2025
Turbulent dissipation along contrasting internal tide paths off the Amazon shelf from AMAZOMIX
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Fernand Assene, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025,https://doi.org/10.5194/os-21-1589-2025, 2025
Short summary
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo

Viewed

Total article views: 910 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
360 176 374 910 20 39
  • HTML: 360
  • PDF: 176
  • XML: 374
  • Total: 910
  • BibTeX: 20
  • EndNote: 39
Views and downloads (calculated since 30 Aug 2024)
Cumulative views and downloads (calculated since 30 Aug 2024)

Viewed (geographical distribution)

Total article views: 972 (including HTML, PDF, and XML) Thereof 972 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 30 Jul 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The first time direct measurements of turbulent dissipation from AMAZOMIX revealed high energy dissipations within [10-6,10-4] W.kg-1 caused at 65 % apart from internal tides in their generation zone, and [10-8,10-7] W.kg-1 caused at 50.4 % by mean circulation of surrounding water masses far fields. Finally, estimates of nutrient fluxes showed a very high flux of nitrate ([10-2, 10-0] mmol N m-2.s-1) and phosphate ([10-3, 10-1] mmol P m-2.s-1), due to both processes in Amazon region.
Share