Clouds influence the functioning of airborne microorganisms
Abstract. Airborne micro-organisms can remain at altitude for several days exposed to multiple environmental constraints that prevent or limit microbial activity, the most important of which is probably the lack of available liquid water. Clouds, i.e. air masses containing liquid water, could offer more favorable conditions. In order to investigate the influence of clouds on the functioning of airborne microorganisms, we captured aerosols into a nucleic acid preservation buffer from a high-altitude mountain meteorological station during cloudy and clear conditions, and examined metatranscriptomes. The specificities of aeromicrobiome’s functioning in clouds compared to the clear atmosphere were then decrypted from differential functional expression analysis (DEA). The data reveal higher RNA-to-DNA content in clouds than in the clear atmosphere suggesting higher metabolic activity, and an overrepresentation of microbial transcripts related to energy metabolism, the processing of carbon and nitrogen compounds, intracellular signaling, metabolic regulations, transmembrane transports, and others. Stress response orients towards responses to osmotic shocks and starvation, rather than the defense against oxidants in clear atmosphere. Autophagy processes in eukaryotes, (macropexophagy, i.e. the recycling of peroxisomes) could help to alleviate the limited amounts of nutrients in the restricted microenvironments provided by cloud droplets. The whole phenomenon resembles the rapid resumption of microbial activity in dry soils after rewetting by rain, known as the "Birch effect", described here for the first time in the atmosphere. This work provides unprecedented information on the modulations of aeromicrobiome functioning in relation to atmospheric conditions. In addition of contributing to the processing and fate of chemical compounds in the atmosphere, cloud-induced modulations of biological processes could have ecological repercussions by shaping airborne microbial diversity and their capacity to invade surface environments.