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Supplementary text and references (Materials and methods) 

Bioinformatic workflow , differential expression analyses and data visualization  

The bioinformatics workflow was elaborated by assembling relevant existing tools on a 

Galaxy instance (The Galaxy Community, 2022) deployed by the University Clermont Auvergne 

bioinformatics facility.  

The preprocessing step consisted of (i) FastQC (v 0.72) (Andrews, 2010) for quality control 

analysis, (ii) Trimmomatic (v 0.36.6) (Bolger et al., 2014) to filter and trim erroneous reads, with 

an initial ILLUMINACLIP step for removing remaining Nextera paired-reads adapters, with a 

sliding window of 10:30, a minimum read length of 100 bp and the leading and trailing parameters 

with a quality threshold at 30. This step removed between 26% and 37 % of the reads in MGs 

(Table S2) and between 20 to 49 % of the reads in MTs (Table S3). Taxonomic affiliations were 

obtained from whole MG and MT datasets using Kraken2 (v 2.1.1) (Wood and Salzberg, 2014) 

against the ñPlusPFò Kraken database (as of 2021-1-27) including known archaeal, bacterial, viral 

plasmid, human, protozoan, and fungal genomes, with a confidence score threshold of 0.1 and with 

the ñreportò and ñreport-zero-countsò options on. The trimmed reads were screened with 

SortMeRNA (v 2.1b.6) (Kopylova et al., 2012) to filter and recover the rRNA gene reads in 

separated files, with the default parameters, ñpaired-outò option, and all the available databases. 

Non-rRNA gene reads were processed for functional analyses. The proportions of rRNA gene 

reads in MG and MT datasets were generally between 1-2 % and 80-94%, respectively. Sample 

20201124AIRôs MT consisted of only 12% rRNA gene reads and was therefore excluded from 

further analysis (Tables S2-S3). Human reads were filtered from the non-rRNA gene reads using 

Bowtie2 (v 2.4.2) (Langmead and Salzberg, 2012), against the NCBI Homo sapiens genome 

ñhg38_2021-5-18ò with default parameters (Tables S2-S3). Human reads were excluded from 

further analyses.  

To create a reference for all data, a non-redundant gene catalog was built using MGs (Fig. 

S2). Each individual dataset of non-RNA reads in MGs (each sample) was first de novo assembled 

using MEGAHIT (v 1.1.3.5) (Li et al., 2015), with default parameters and a minimum contig length 

of 500 bp. Depending on the sample, the number of assembled contigs ranged from ~43 000 to 

~495 000 (Table S2), leading to 2 832 534 contigs with a maximal length of 21 000 to 200 000 

bp, and a mean size of ~750 to 1 010 bp depending on samples. Genes were then predicted from 

these contigs using MetaGeneAnnotator (v 1.0.0) (Noguchi et al., 2008), with the ñMetaGenomicò 

option and BED format as the output file. From the 2 832 534 contigs, 3 168 750 genes were 

predicted. Finally, to prevent redundancy, gene sequences were clustered at 95 % identity using 

CD-HIT (v 4.8.1) (Fu et al., 2012; Li and Godzik, 2006) and only the representative sequences for 

each cluster were kept. Only sequences >100 bp, and exhibiting >90 % identity with a reference 

sequence were kept. In total, 1 067 351 non-redundant genes were finally kept, with sequence 

length ranging from 100 to 22 065 bp and an average size of 330 bp. Functional annotation of the 

gene catalog was performed using DIAMOND (v 2.0.8.0) (Buchfink et al., 2015) in the ñblastxò 

mode, with default parameters and the UniProtKB Swiss-Prot functional gene database (as of 

2021_03) (The UniProt Consortium, 2019): 163 057 genes could be annotated, representing 40 
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264 unique UniProtKB entries, i.e., ~7 % of the total number of entries in this database, illustrating 

the high biological diversity circulating in the atmosphere. Most (91.5 %) annotated genes are 

related to eukaryotes (~60 % to fungi), 23.6 % to viridiplantae, and 14.3 % to metazoa. Bacteria, 

viruses and archaea contributed 7.6 %, 0.6 %, and 0.3 % of the annotated genes, respectively.  

Non-rRNA gene sequences from all MGs and MTs were finally mapped to the gene catalog 

to obtain read counts per gene using BWA-MEM (v 0.7.17.1) (Li and Durbin, 2009) with default 

parameters. Percentages of properly mapped reads against the gene catalog ranged between ~4 % 

and ~17 % for MGs and between ~3% and ~10% for MTs (Tables S2-S3). Only genes with >10 

mapped sequences in MGs were considered, and the count tables for MGs and MTs were filtered 

in order to remove genes affiliated with ñEmbryophytesò and ñMetazoaò and focus on microbial 

genes. Finally, unique 21 046 unique microbial genes (over 40 264 in total) were retained for 

downstream analyses. Annotated sequences were grouped according to their respective Gene 

Ontology terms (GOs) (Ashburner et al., 2000; The Gene Ontology Consortium, 2021). 

Data normalization and differential expression analysis (DEA) were performed using the R 

package MTXmodel (R v4.0.3; MTXmodel v1.5.1) (Zhang et al., 2021). To highlight overall 

functional expression patterns independently from atmospheric conditions, this was run using the 

following options, with MT and MG datasets as the input files consisted of: no transformation, clr 

(centered-log ratio) normalization, LM analysis method, BH correction method, min abundance at 

0.0001, min prevalence at 0.5, max significance at 0.25, and ñDataTypeò (i.e., MTs or MGs) as a 

fixed effect. DEA provides relative expression coefficients based on the selected fixed effect. 

Positive coefficients (coeff) here indicate features (taxonomic groups or genes) significantly more 

represented in MTs than in MGs, while negative coefficients indicate overrepresentation in MGs 

(i.e., no significant expression), with higher absolute values for higher representations.  

To identify the functions and genes whose expression was related to atmospheric conditions, 

ñEnvTypeò was selected as the fixed effect (cloud or clear condition), with MTs as input files, and 

MGs as ñDNA dataò for normalization. The environment type ñcloudò was used as the reference, 

so positive coefficients (coeff) here indicate the features significantly more expressed in clouds 

compared with clear conditions, and the opposite for negative values.  

Data visualizations were designed with the following R packages: ggplot2 (v3.4.1), ggrepel 

(v0.9.3), ggsignif (v0.6.4), ggdendro (v0.1.23), factoextra (v1.0.7), gridExtra (v2.3), vegan (v2.6-

4), pheatmap (v1.0.12). Relationship networks for GOs were generated using OLSVis (Vercruysse 

et al., 2012) and Cytoscape (v3.9.1). Metabolic pathways were generated from KEGG database 

(Kanehisa et al., 2023).  
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Fig S1. 

Main steps of the bioinformatics workflow elaborated for this study. This uses the following tools, 

on a Galaxy environment: FastQC (v0.72), Trimmomatic (v0.36.6), Bowtie2 (v2.4.2), 

SortMeRNA (v2.1b.6), MEGAHIT (v1.1.3.5), MetaGeneAnnotator (v1.0.0), CD-Hit (v4.8.1), 

Kraken2 (v2.11), Diamond (v2.0.8.0), BWA-MEM (v0.7.17.1), and the MTXmodel R package 

(v1.5.1) (see supplementary text for references). 
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Fig S2. 

Content of the gene catalog used as a common reference to all datasets, elaborated by merging all 

the metagenomes of the study and curated for redundancy. A. Contig or gene numbers at each step 

of the gene catalog construction, from left to right; B. Rank-abundance plot representing the 

number of genes associated with unique UniProtKB entries; C. Taxonomic affiliations associated 

with annotated genes; the taxa distribution in Eukaryotes is specified in the lower pie-chart. 
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Fig S3. 

Average proportions of reads associated with Bacteria, Eukaryota, Archaea, and Viruses in 

metagenomes (MG, left) and metatranscriptomes (MT, right), during cloudy (lower charts) and 

clear conditions (upper charts). 
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Fig S4. 

Bacteria diversity. (A) Distribution of the most abundant bacterial orders in the metagenomes, and 

corresponding hierarchical clusterings (Wardôs method, ñward.D2ò). The intensity scale depicts 

centered-log ratio (clr) abundances. EnvType: environment type. The samples are named as 

follows: ñAò for clear conditions (air) or ñCò for cloud, followed by the sampling date in the format 

ñmmddò (month and day); (B) Alpha diversity indexes (observed and estimated richness, 

Shannonôs diversity and Inverse Simpson evenness) in clouds and clear atmosphere samples; (C) 

Venn diagram depicting the distribution of richness between clouds and clear atmosphere samples 

at the genus level.   
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Fig S5. 

Eukaryotic diversity. (A) Distribution of eukaryotic orders in the metagenomes, and corresponding 

hierarchical clusterings (Wardôs method, ñward.D2ò). The intensity scale depicts centered-log 

ratio (clr) abundances. EnvType: environment type. The samples are named as follows: ñAò for 

clear conditions (air) or ñCò for cloud, followed by the sampling date in the format ñmmddò (month 

and day); (B) Alpha diversity indexes (observed and estimated richness, Shannonôs diversity and 

Inverse Simpson evenness) in clouds and clear atmosphere samples; (C) Venn diagram depicting 

the distribution of richness between clouds and clear atmosphere samples at the genus level.   
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Fig S6. 

Principal component analysis (PCA) representing taxonomy distribution in metagenomes (MG) 

and metatranscriptomes (MT) for clouds and clear atmospheric conditions, based on 6 373 unique 

taxa. Count data were centered-log ratio (clr) transformed. Ellipses indicate 95% confidence levels. 

 

 


