Preprints
https://doi.org/10.5194/egusphere-2024-2310
https://doi.org/10.5194/egusphere-2024-2310
16 Sep 2024
 | 16 Sep 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

A Comprehensive Global Modelling Assessment of Nitrate Heterogeneous Formation on Desert Dust

Rubén Soussé-Villa, Oriol Jorba, María Gonçalves Ageitos, Dene Bowdalo, Marc Guevara, and Carlos Pérez García-Pando

Abstract. Desert dust undergoes complex heterogeneous chemical reactions during atmospheric transport, forming nitrate coatings that impact hygroscopicity, gas species partitioning, optical properties, and aerosol radiative forcing. Contemporary atmospheric chemistry models show significant disparities in aerosol nitrogen species due to varied parameterizations and inaccuracies in representing heterogeneous chemistry and dust alkalinity. This study investigates key processes in nitrate formation over dust and evaluates their representation in models. We incorporate varying levels of dust heterogeneous chemistry complexity into the MONARCH model, assessing sensitivity to key processes. Our analyses focus on the condensation pathways of gas species onto dust (irreversible and reversible), the influence of nitrate representation on species' burdens and lifetimes, size distribution, and the alkalinity role. Using annual global simulations, we compare particulate and gas species surface concentrations against observations and evaluate global budgets and spatial distributions. Findings show significant outcome dependence on methodology, particularly on the reversible or irreversible condensation of gas species on particles, with a wide range of burdens for particulate nitrate (0.66 to 1.93 Tg) and correlations with observations (0.66 to 0.91). Particulate ammonium burdens display less variability (0.19 to 0.31 Tg). Incorporating dust and sea-salt alkalinity yields results more consistent with observations, and assuming reversible gas condensation over dust, along with alkalinity representation, aligns best with observations, while providing consistent gas and particle partitioning. In contrast, irreversible uptake reactions overestimate coarse particulate nitrate formation. Our analysis provides guidelines for integrating nitrate heterogeneous formation on dust in models, paving the road for improved estimates of aerosol radiative effects.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Rubén Soussé-Villa, Oriol Jorba, María Gonçalves Ageitos, Dene Bowdalo, Marc Guevara, and Carlos Pérez García-Pando

Status: open (until 28 Oct 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Rubén Soussé-Villa, Oriol Jorba, María Gonçalves Ageitos, Dene Bowdalo, Marc Guevara, and Carlos Pérez García-Pando

Data sets

"A Comprehensive Global Modelling Assessment of Nitrate Heterogeneous Formation on Desert Dust": Column loads monthly means per species. Rubén Soussé https://doi.org/10.5281/zenodo.12789730

Model code and software

MONARCH atmospheric chemistry model BSC Earth Sciences department https://earth.bsc.es/gitlab/es/monarch

Rubén Soussé-Villa, Oriol Jorba, María Gonçalves Ageitos, Dene Bowdalo, Marc Guevara, and Carlos Pérez García-Pando
Metrics will be available soon.
Latest update: 16 Sep 2024
Download
Short summary
Desert dust forms nitrate coatings as it travels through the atmosphere. However, current models that predict this process vary greatly due to different methods and inaccuracies. We examined how nitrate forms in a global model, focusing on how gases condense on dust, the lifespan of different particles, and the impact of alkalinity. Our findings show that models work best when they consider reversible gas condensation with alkalinity. This should lead to better estimates of climate impacts.