Supplement of A Comprehensive Global Modelling Assessment of Nitrate Heterogeneous Formation on Desert Dust

Rubén Soussé-Villa¹, Oriol Jorba¹, María Gonçalves Ageitos¹, Dene Bowdalo¹, Marc Guevara¹, and Carlos Pérez García-Pando^{1,2}

¹Barcelona Supercomputing Center, Barcelona, Spain

²Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

Correspondence: Rubén Soussé (ruben.sousse@bsc.es), Oriol Jorba (oriol.jorba@bsc)

S1 Model emissions, size bins and alkalinity calculations

Species	Emission (Tgy-1)
NO	75.93
NO2	17.86
HONO	0.51
NH3	61.81
SO2	104.40
PM2.5SO4	0.53

Table S1. Total emissions (anthropogenic, biogenic and biomass burning) for 2018 used in this study.

				DUST					
	units	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6	bin 7	bin 8
Density	kgm-3	2500	2500	2500	2500	2650	2650	2650	2650
Radius vol.	μm	0.15	0.25	0.47	0.8	1.36	2.29	3.93	7.24
Radius eff.	μm	0.15	0.25	0.45	0.78	1.32	2.24	3.80	7.11
PM2.5 frac.		1	1	1	1	0.38	0	0	0
PM10 frac.		1	1	1	1	1	1	0.87	0
			S	EA_SAI	Л				
	units	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6	bin 7	bin 8
Density	kgm-3	2160	2160	2160	2160	2160	2160	2160	2160
Radius vol.	μm	0.15	0.25	0.47	0.81	1.40	2.37	4.30	9.23
Radius eff.	μm	0.14	0.24	0.45	0.79	1.36	2.32	4.13	8.64
PM2.5 frac.		1	1	1	1	0.32	0	0	0
PM10 frac.		1	1	1	1	1	1	0.75	0
				NO3					
	units	bin 1	bin 2						
Density	kgm-3	1700	2380						
Radius vol.	μm	0.35	2.23						
Radius eff.	μm	0.24	1.79						
PM2.5 frac.		1	0.2						
PM10 frac.		1	1						
				NH4					
	units	bin 1	bin 2						
Density	kgm-3	1700	2380	•					
Radius vol	μm	0.35	2.23						
Radius eff.	μm	0.24	1.79						
PM2.5 frac.		1	0.2						
PM10 frac.		1	1						
				SO4					
	units	bin 1	bin 2						
Density	kgm-3	1700	2380	-					
Radius vol.	μm	0.35	2.23						
Radius eff.	$_{\mu m}$	0.24	1.79						
PM2.5 frac.		1	0.2						
PM10 frac.		1	1						

Mineral	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Soluble in water?	Soluble in acids?	Assumed reactive?	Notes/ References
Illite	8.5E-5	4.1E-4	3.1E-3	8.8E-3	2.2E-2	3.2E-2	5.5E-2	1.4E-2	2	yes	yes	
Montmorillonite	6.2E-5	3.0E-4	2.2E-3	6.4E-3	1.6E-2	2.3E-2	4.0E-2	1.0E-2		yes	yes	2
Kaolinite	7.8E-5	3.7E-4	2.8E-3	8.0E-3	2.0E-2	2.9E-2	5.0E-2	1.3E-2	0	yes	оц	3
Chlorite	1.2E-5	5.6E-5	4.2E-4	1.2E-3	4.8E-3	1.1E-2	2.6E-2	7.9E-3	0		оц	4
Vermiculite	7.9E-6	3.8E-5	2.8E-4	8.1E-4	2.1E-3	2.9E-3	5.1E-3	1.3E-3	0	OL	оц	5
Feldspar	3.4E-6	1.6E-5	1.2E-4	3.5E-4	6.3E-3	2.2E-2	6.0E-2	1.9E-2	0	yes	yes	9
Quartz	1.2E-5	5.8E-5	4.4E-4	1.3E-3	1.9E-2	6.6E-2	1.8E-1	5.6E-2	ОП	ОЦ	ou	7
Calcite	3.1E-5	1.5E-4	1.1E-3	3.2E-3	1.0E-2	1.9E-2	3.9E-2	1.1E-2	yes	yes	yes	8
Hematite	3.5E-6	1.7E-5	1.3E-4	3.6E-4	9.2E-4	1.3E-3	2.3E-3	5.9E-4	Ю	yes	оц	0
Goethite	6.2E-6	2.9E-5	2.2E-4	6.3E-4	1.8E-3	3.1E-3	6.2E-3	1.8E-3	0		оц	10
Gypsum	4.7E-7	2.2E-6	1.7E-5	4.8E-5	1.4E-4	2.5E-4	5.2E-4	1.5E-4	poor	yes	оц	11
Mica	0-0E+0	0-0E+0	0-0E+0	0-0E+0	2.7E-3	1.0E-2	2.8E-2	9.0E-3	Ю	Ю	ou	12
Total	3.0E-4	1.4E-3	1.1E-2	3.1E-2	1.1E-1	2.2E-1	4.9E-1	1.5E-1				
Table S3. Globally-ave	sraged mir	teral compo	sition for e	ach bin assı	umed from	Journet et :	al. 2014 mir	ieral databa	lse. Referenc	ses:		
1. Assumed reactive be	scause rela	tively solub.	ole in acids	Webminera	d (2008f)							
2. Assumed reactive be	scause rela	tively solub	ole in acids	Nutting (15	141, 1932)							
3. Assumed nonreactiv	e because	predominar	ntly contain	uing Al and	Si. Yang (2	(800)						
4. Assumed nonreactiv	e because	not soluble	in water. B	ritannica, T	The Editors	of Encyclo	paedia (201	8); Mindat.	org (a)			
5. Assumed nonreactiv	e because	not soluble.	. Huggett (2	2015); Schu	ılze (2005);	Bleam (20	(11)					
6. Assumed reactive be	scause rela	tively solub	ole in acids	Blum (1994	4); Mindat.	org (b)						
7. Assumed nonreactiv	e because	not soluble.	. Usher et a	1. (2003)								
8. Usher et al. (2003);	Krueger et	al. (2004);	Hodzic et ;	al. (2006)								
9. Assumed nonreactiv	e because	iron is not c	considered	in ISORRC	PIA-II. Na	tional Cent	er for Biote	chnology Ir	nformation (2024a); Wea	ast (1980)	
10. Assumed nonreact	tive becau	se not solu	ıble, althou	gh lacking	informatic	if solub	le in acids.	Essington	et al. (2005	5); National	Center for	Biotechnology
Information. PubChem	1 Compour	nd Database	; (2024b)									
11. Zhang and Muham	nmed (198	9); Nationa	l Center foi	r Biotechnc	ology Inforn	mation. Pul	Chem Con	1pound Dat	abase (2024	a); Krueger	et al. (2004); Hodzic et al.
(2006)												

4

12. National Center for Biotechnology Information (2024b)

Mineral	Mineral Mw (g/mol)	Soluble element	Element Mw (g/mol)	Element fraction	Bin 1	Bin 2	Bin 3	Bin 4	Total fine	Bin 5	Bin 6	Bin 7	Bin 8	Total coarse	Total	References
Illite	389.34	¥	39.10	0.10	2.84%	2.84%	2.84%	2.84%	2.84%	2.10%	1.45%	1.13%	%66.0	1.41%	2.20%	-
	389.34	Mg	24.31	0.06	1.76%	1.76%	1.76%	1.76%	1.76%	1.30%	%06.0	0.70%	0.62%	0.88%	1.37%	-
Montmorillonite	549.07	Са	40.08	0.07	1.50%	1.50%	1.50%	1.50%	1.50%	1.11%	0.76%	0.59%	0.52%	0.75%	1.16%	2
	549.07	Na	22.99	0.04	0.86%	0.86%	0.86%	0.86%	0.86%	0.63%	0.44%	0.34%	0.30%	0.43%	0.67%	2
Feldspar																
- 1/3 Albite	263.02	Na (1/3)	22.99	0.03	0.03%	0.03%	0.03%	0.03%	0.03%	0.16%	0.27%	0.32%	0.35%	0.27%	0.14%	e
- 1/3 Anorthite	277.41	Ca (1/3)	40.08	0.04	0.05%	0.05%	0.05%	0.05%	0.05%	0.26%	0.44%	0.53%	0.57%	0.45%	0.23%	4
- 1/3 Orthoclase	278.33	K (1/3)	39.10	0.04	0.05%	0.05%	0.05%	0.05%	0.05%	0.25%	0.43%	0.52%	0.56%	0.44%	0.22%	5
Calcite	100.09	Са	40.08	0.40	4.15%	4.15%	4.15%	4.15%	4.15%	3.76%	3.41%	3.23%	3.16%	3.39%	3.81%	9
Gypsum	172.20	Ca	40.08	0.23	0.04%	0.04%	0.04%	0.04%	0.04%	0.03%	0.03%	0.02%	0.02%	0.03%	0.03%	7
Total Ca					5.73%	5.73%	5.73%	5.73%	5.73%	5.15%	4.64%	4.39%	4.28%	4.61%	5.17%	
Total Na					0.89%	0.89%	0.89%	0.89%	0.89%	0.79%	0.71%	0.66%	0.65%	0.70%	0.79%	
Total K					2.88%	2.88%	2.88%	2.88%	2.88%	2.35%	1.88%	1.64%	1.55%	1.85%	2.37%	
Total Mg					1.76%	1.76%	1.76%	1.76%	1.76%	1.30%	%06.0	0.70%	0.62%	0.88%	1.32%	

Table S4. Size-resolved NVC content from globally-averaged mineralogy of Journet et al. 2014 for those minerals assumed to be soluble in water. References:

1. Webmineral (2008f)

2. Nutting (1941, 1932)

3. Webmineral (2008a)

4. Webmineral (2008b)

5. Webmineral (2008e)

6. Webmineral (2008c); National Center for Biotechnology Information. PubChem Compound Database (2024a)

7. Webmineral (2008d); Hulett and Allen (1902)

Mineral	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Soluble in water?	Soluble in acids?	Assumed reactive?	Notes/ References
Illite	1.1E-04	5.4E-04	4.0E-03	1.2E-02	2.9E-02	4.2E-02	7.2E-02	1.9E-02	оц	yes	yes	-
Montmorillonite	6.4E-05	3.0E-04	2.3E-03	6.5E-03	1.7E-02	2.4E-02	4.1E-02	1.1E-02	ı	yes	yes	2
Kaolinite	7.6E-05	3.6E-04	2.7E-03	7.8E-03	2.0E-02	2.8E-02	4.8E-02	1.3E-02	оц	yes	Ю	3
Calcite	1.3E-05	6.3E-05	4.7E-04	1.4E-03	5.2E-03	1.2E-02	2.7E-02	8.0E-03	yes	yes	yes	4
Quartz	2.0E-05	9.7E-05	7.3E-04	2.1E-03	2.4E-02	8.0E-02	2.1E-01	6.7E-02	оц	Ю	оп	5
Feldspar	8.1E-06	3.9E-05	2.9E-04	8.3E-04	8.5E-03	2.8E-02	7.3E-02	2.3E-02	оц	yes	yes	9
Iron Oxide	4.6E-06	2.2E-05	1.6E-04	4.7E-04	1.6E-03	3.3E-03	7.3E-03	2.2E-03	ı	ı	0	7
Gypsum	3.4E-06	1.6E-05	1.2E-04	3.5E-04	1.3E-03	2.8E-03	6.3E-03	1.9E-03	poor	yes	ОП	8
Total	3.0E-04	1.4E-03	1.1E-02	3.1E-02	1.1E-01	2.2E-01	4.9E-01	1.4E-01				
Table S5. Globally-ave	eraged min	ieral compo	sition for ea	ach bin assu	amed from	Claquin et ;	al. (1999) n	uineral data	base. Refere	suces:		
1. Assumed reactive be	scause rela	tively solut	le in acids '	Webminera	1 (2008f)							
2. Assumed reactive be	scause rela	tively solut	le in acids l	Nutting (19.	41, 1932)							
3. Assumed nonreactiv	e because	predomina	ntly contain	ing Al and	Si. Yang (2	(800)						
4. Usher et al. (2003);	Krueger et	al. (2004);	Hodzic et a	ıl. (2006)								
5. Assumed nonreactiv	e because	not soluble.	. Usher et al	1. (2003)								
6. Assumed reactive be	scause rela	tively solub	le in acids l	Blum (1994	4); Mindat.	org (b)						
7. Assumed nonreactiv	e because	iron is not (considered i	in ISORRO	PIA-II. Nat	tional Cente	er for Biote	chnology In	formation (2	2024a); We	ast (1980)	
8. Zhang and Muhami	ned (1989)); National	Center for	Biotechnol	ogy Inform	nation. Pub(Chem Com	pound Dats	base (2024;	a); Krueger	et al. (2004); Hodzic et al.

6

(2006)

Mineral	Mineral Mw (g/mol)	Soluble element	Element Mw (g/mol)	Element fraction	Bin 1	Bin 2	Bin 3	Bin 4	Total fine	Bin 5	Bin 6	Bin 7	Bin 8	Total coarse	Total	References
Illite	389.340	¥	39.10	0.10	3.76%	3.76%	3.76%	3.76%	3.76%	2.78%	1.92%	1.49%	1.31%	1.88%	2.92%	4
	389.340	Mg	24.31	0.06	2.34%	2.34%	2.34%	2.34%	2.34%	1.73%	1.19%	0.93%	0.82%	1.17%	1.82%	۲
Montmorillonite	549.070	Ca	40.08	0.07	1.54%	1.54%	1.54%	1.54%	1.54%	1.14%	0.78%	0.61%	0.54%	0.77%	1.20%	2
	549.070	Na	22.99	0.04	0.88%	0.88%	0.88%	0.88%	0.88%	0.65%	0.45%	0.35%	0.31%	0.44%	0.69%	2
Feldspar																
- 1/3 Albite	263.020	Na (1/3)	22.99	0.03	0.07%	0.07%	0.07%	0.07%	0.07%	0.21%	0.33%	0.39%	0.42%	0.34%	0.19%	с
- 1/3 Anorthite	277.410	Ca (1/3)	40.08	0.04	0.12%	0.12%	0.12%	0.12%	0.12%	0.35%	0.55%	0.65%	0.70%	0.56%	0.31%	4
- 1/3 Orthoclase	278.330	K (1/3)	39.10	0.04	0.11%	0.11%	0.11%	0.11%	0.11%	0.34%	0.54%	0.63%	0.68%	0.55%	0.31%	5
Calcite	100.090	Са	40.08	0.40	1.76%	1.76%	1.76%	1.76%	1.76%	1.95%	2.11%	2.19%	2.22%	2.12%	1.92%	9
Gypsum	172.200	Са	40.08	0.23	0.26%	0.26%	0.26%	0.26%	0.26%	0.28%	0.30%	0.30%	0.31%	0.30%	0.28%	7
Total Ca					3.68%	3.68%	3.68%	3.68%	3.68%	3.71%	3.74%	3.76%	3.76%	3.74%	3.71%	
Total Na					0.95%	0.95%	0.95%	0.95%	0.95%	0.86%	0.78%	0.75%	0.73%	0.78%	0.87%	
Total K					3.87%	3.87%	3.87%	3.87%	3.87%	3.12%	2.45%	2.13%	1.99%	2.42%	3.15%	
Total Mg					2.34%	2.34%	2.34%	2.34%	2.34%	1.73%	1.19%	0.93%	0.82%	1.17%	1.75%	

Table S6. Size-resolved NVC content from globally-averaged mineralogy of Claquin et al. (1999) for those minerals assumed to be soluble in water. References:

1. Webmineral (2008f)

2. Nutting (1941, 1932)

3. Webmineral (2008a)

4. Webmineral (2008b)

5. Webmineral (2008e)

6. Webmineral (2008c); National Center for Biotechnology Information. PubChem Compound Database (2024a)

7. Webmineral (2008d); Hulett and Allen (1902)

Figure S1. Column load ($mg \ m^{-2}$) of HNO_{3(g)}, fine and coarse particulate nitrate simulated by the different mechanisms, averaged for 2018.

Figure S2. Zonal average concentration ($\mu g \ m^{-3}$) of HNO₃, find and coarse particulate nitrate simulated by the different mechanisms in 2018.

Figure S3. Column load $(mg m^{-2})$ of HNO_{3(g)}, fine and coarse particulate nitrate simulated by additional mechanisms, averaged for 2018.

Figure S4. Surface concentration ($\mu g \ m^{-3}$) of NH_{3(g)}, fine and coarse particulate ammonium simulated by the different mechanisms, averaged for 2018.

Figure S5. Column load ($mg \ m^{-2}$) of $NH_{3(g)}$, fine and coarse particulate ammonium simulated by different mechanisms, averaged for 2018.

Figure S6. Zonal average concentration ($\mu g \ m^{-3}$) of $NH_{3(g)}$, find and coarse particulate ammonium simulated by the different mechanisms in 2018.

Figure S7. Surface concentration ($\mu g \ m^{-3}$) of SO_{2(g)}, fine and coarse particulate sulfate simulated by the different mechanisms, averaged for 2018.

Figure S8. Column load $(mg m^{-2})$ of $SO_{2(g)}$, fine and coarse particulate sulfate simulated by different mechanisms, averaged for 2018.

Figure S9. Zonal average concentration ($\mu g \ m^{-3}$) of SO_{2(g)}, find and coarse particulate sulfate simulated by the different mechanisms in 2018.

Column average concentration (20180101 to 20181231)

Figure S10. Dust average column load (mgm^{-2}) for 2018.

Figure S11. Sea salt average column load (mgm^{-2}) for 2018.

S3 Statistical metrics and supplementary evaluation results

Each experiment is evaluated against observations in terms of correlation coefficient (corr), mean bias (bias) and root mean 5 square error (rmse), formulated as follows:

$$corr = \frac{\sum_{i=1}^{N} (S_i - \bar{S})(O_i - \bar{O})}{\sqrt{\sum_{i=1}^{N} (S_i - \bar{S})^2} \sqrt{\sum_{i=1}^{N} (O_i - \bar{O})^2}}$$
(1)

$$bias = \frac{\sum_{i=1}^{N} (S_i - O_i)}{N}$$
 (2)

$$rmse = \sqrt{\frac{\sum_{i=1}^{N} (S_i - O_i)^2}{N}}$$
 (3)

Where *S* are the simulation results, *O* the observations and *N* the number of observations.

Figure S12. Yearly surface concentration evaluation for Asia, Europe and North-Central America continents. Species are in rows and continents in columns. Black solid dots and crosses represent observational mean and median, respectively. Error bars are the interquantile 0.25 to 0.75 distance. Coloured lines represent medians obtained from the most representative configurations. Blue shade is the interquantile 0.25 - 0.75 distance for the DBCLL_du-ssAlk simulation. Observational PM_{10} from EANET (Asia) and US-EPA-CASTNET (North America) refers to total particle concentration, while GHOST data refers to data limited to PM_{10} .

Figure S12. Yearly surface concentration evaluation for Asia, Europe and North-Central America continents. Species are in rows and continents in columns. Black solid dots and crosses represent observational mean and median, respectively. Error bars are the interquantile 0.25 to 0.75 distance. Coloured lines represent medians obtained from the most representative configurations. Blue shade is the interquantile 0.25 - 0.75 distance for the DBCLL_du-ssAlk simulation. Observational PM_{10} from EANET (Asia) and US-EPA-CASTNET (North America) for sulfate refers to total particle concentration, while GHOST data refers to data limited to PM_{10} .

Figure S13. Stations used for each species in the observational evaluation from the main text Figure 5 and Supplement Figure S12.

Figure S14. Observational evaluation of gas and particulate species. Black solid dots and crosses represent monthly mean and median of observations, respectively. Colour lines represent each configuration's monthly median surface concentrations over observational points. Error bars are the observational interquantile 0.25 to 0.75 distance. For the Total NO₃ modes, data from Europe, Asia and North-Central America has been averaged, despite data from Asia and North-Central America refers to total particle concentration, while data from Europe is limited strictly to $10\mu m$ particle diameter.

Table S7: Correlation coefficients, bias and root mean square error (RMSE) of each configuration's results median with respect to observations' median for timeseries of Figure 5 from the main manuscript.

	HNO3	3		PM2.	5NO3		Total	NO3	
	corr	bias	rmse	corr	bias	rmse	corr	bias	rmse
noHC	0.03	0.15	0.20	0.00	-0.43	0.49	0.00	-0.70	0.77
HYB_g0p1	0.05	-0.13	0.13	0.83	0.18	0.23	0.81	1.96	2.01
HYB_DL	-0.08	-0.10	0.11	0.61	-0.03	0.21	0.53	1.32	1.40
DBCLL_duAlk	-0.34	-0.05	0.08	0.21	1.24	1.28	0.80	1.61	1.65
DBCLL_ClaqAlk	0.14	0.09	0.12	0.82	-0.18	0.24	0.81	-0.09	0.22

	NH3			PM2.	5NH4		Total 1	NH4	
	corr	bias	rmse	corr	bias	rmse	corr	bias	rmse
noHC	0.80	-0.29	0.44	0.00	-0.48	0.51	0.00	-0.45	0.46
HYB_g0p1	0.85	-0.53	0.59	0.64	0.01	0.16	0.47	0.07	0.11
HYB_DL	0.85	-0.49	0.56	0.77	-0.09	0.14	0.50	0.02	0.09
DBCLL_duAlk	0.88	-0.71	0.73	0.27	0.53	0.58	-0.46	0.46	0.48
DBCLL_ClaqAlk	0.85	-0.53	0.59	0.70	-0.01	0.16	0.50	0.09	0.12

	SO2			PM2.	5SO4		Total S	SO4	
	corr	bias	rmse	corr	bias	rmse	corr	bias	rmse
noHC	0.61	0.65	1.24	0.59	-0.79	0.80	0.62	-1.91	1.93
HYB_g0p1	0.62	-0.12	0.94	0.59	0.29	0.32	0.53	-0.42	0.54
HYB_DL	0.63	-0.29	0.91	0.57	0.29	0.33	0.60	-0.39	0.50
DBCLL_duAlk	0.63	-0.29	0.91	0.55	0.29	0.32	0.59	-0.38	0.49
DBCLL_ClaqAlk	0.62	-0.16	0.94	0.57	0.29	0.33	0.55	-0.41	0.52

	PM2.5	5		PM10)	
	corr	bias	rmse	corr	bias	rmse
noHC	0.75	-5.62	9.55	0.40	-23.16	28.42
HYB_g0p1	0.76	18.02	21.95	0.38	14.27	29.96
HYB_DL	0.76	19.44	23.81	0.36	13.87	30.41
DBCLL_duAlk	0.71	28.07	31.58	0.38	16.47	30.10
DBCLL_ClaqAlk	0.76	20.75	24.88	0.43	7.45	24.20

Table S8. GHOST quality flags used for the observational evaluation.

Code	Flag	Description
0	Missing Measurement	i.e. NaN.
1	Infinite Value	Value is infinite - occurs when data values are outside of the range that <i>float32</i> data
		type can handle (-3.4E+38 to +3.4E+38).
2	Negative Measurement	Measurement is negative in absolute terms.
6	Invalid Data Provider Flags - GHOST Decreed	Measurements are associated with data quality flags given by the data provider which
		have been decreed by the GHOST project architects as being associated with substantial uncertainty/bias.
8	No Valid Data to Average	After screening by key QA flags, no valid data remains to average in the temporal
		window.
20	Erroneous Primary Sampling	The primary sampling is not appropriate to prepare the specific parameter for subse- quent measurement.
21	Erroneous Sample Preparation	The sample preparation is not appropriate to prepare the specific parameter for subse-
		quent measurement.
22	Erroneous Measurement Methodology	The measurement methodology used is not known to be able to measure the specific
		parameter.
72	Below Preferential Lower Limit of Detection	Measurement is below or equal to the preferential lower limit of detection.
75	Above Preferential Upper Limit of Detection	Measurement is above or equal to the preferential upper limit of detection.
82	Insufficient Measurement Resolution - Preferential	The preferential resolution for the measurement is coarser than a set limit (variable by measured parameter).
83	Insufficient Measurement Resolution - Empirical	The resolution of the measurement is analysed month by month. If the minimum differ-
		ence between observations is coarser than a set limit (variable by measured parameter),
		measurements are flagged.
110	Data Outlier - Exceeds Scientifically Decreed Low-	The measured value is below or greater than scientifically feasible lower/upper limits
	er/Upper Limit	(variable by parameter).
111	Data Outlier - Monthly Median Exceeds Scientifically	The median of the measurements in a month is greater than a scientifically feasible
	Decreed Upper Limit	limit (variable by parameter).
112	Data Outlier - Network Decreed	Data has been reported to be an outlier through data flags by the network data reporters
		(and not manually checked and verified as valid).
113	Data Outlier - Manually Decreed	Data has been found and decreed manually to be an outlier.
115	Probable Data Outlier - Monthly Adjusted Boxplot	Measured value exceeds adjusted boxplot outer fence (lower or upper) of monthly data, therefore is a probable data outlier
132	Systematic Inconsistent Monthly Distributions - 4/6	4 out of 6 months' distributions are classed as Zone 6 or higher suggesting there are
1.52	Months >= Zone 6	potentially systematic reasons for the inconsistent distributions across the 6 months
133	Systematic Inconsistent Monthly Distributions - 8/12	8 out of 12 months' distributions are classed as Zone 6 or higher, suggesting there are
	Months >= Zone 6	potentially systematic reasons for the inconsistent distributions across the 12 months.

10 S4 Budget tables

Table S9. Results for gas $HNO_{3(g)}$ obtained with the studied heterogeneous chemistry mechanisms. Results from the references are reported at the end of the Table: the average of all the participating models in the intercomparison AeroCom phase III nitrate experiment for 2008, specifying their standard deviation (*STD*), and results from the GMI model (using a similar HYB approach with UPTK reactions on dust and SS) and the EMAC model (*EMAC 2008*, that uses a similar approach to DBCLL_du-ssAlk). Also using the EMAC model, results obtained by the Karydis et al. (2016) study are reported as *EMAC 2005-2008*. Results from models using a similar approach to HYB_du-ssUPTK are reported as *IFS* for Rémy et al. (2022), *LMDz-INCA* for Hauglustaine et al. (2014) and *MetOffice UM* for Jones et al. (2021).

HNO	Burden	Wet Dep.	Dry Dep.	Total Dep.	Production	Lifetime
$\mathrm{IIIVO}_{3(\mathrm{g})}$	(Tg)	(Tg y-1)	(Tg y-1)	(Tg y-1)	(Tg y-1)	(days)
noHC	4.79	47.1	110.4	157.5	158.3	5.5
fTEQ_noAlk	4.99	48.6	107.3	155.9	156.7	5.8
fTEQ_du-ssAlk	2.93	41.4	77.4	118.8	119.3	4.5
HYB_duUPTK	1.96	29.9	52.0	81.9	82.4	4.4
HYB_du-ssUPTK	0.69	7.2	13.7	20.9	21.4	5.9
HYB_gDU=0.1	0.46	5.9	5.9	11.8	12.2	7.1
HYB_DL	0.72	6.7	14.0	20.7	21.2	6.2
DBCLL_noAlk	5.13	49.1	109.1	158.2	159.0	5.9
DBCLL_duAlk	2.72	45.4	59.9	105.3	105.7	4.7
DBCLL_du-ssAlk	2.53	36.1	61.9	98.0	98.6	4.7
DBCLL_ClaqAlk	2.58	36.2	62.1	98.3	98.9	4.8
AeroCom	2.50	108.7	45.8	154.5	179.0	4.6
STD AeroCom	± 1.83	± 39.8	±13.0	± 52.8	± 89.9	±1.6
GMI	2.50	108.7	45.8	154.5	110.0	3.5
EMAC 2008 ¹	3.10	136.0	56.1	192.1	-	-
EMAC 2005-2008 ²	1.65	-	-	-	-	-
IFS	-	-	-	-	-	-
LMDz-INCA	1.35	76.6	66.0	142.6	218.3	2.3
MetOffice UM ³	2.16	67.1	27.0	94.1	242.1	3.2

¹ From Bian et al. (2017).

² From Karydis et al. (2016).

³ Jones et al. (2021) performs two sensitivity tests to the accommodation coefficient used for NO_3^- formation in the fine mode: *FAST* with 0.193 and *SLOW* with 0.001. Here, results from the *FAST* test are reported on the basis that they present similar fine NO_3^- formation rates to our average fine nitrate results

Table S10. Results for gas $NH_{3(g)}$ obtained with the studied heterogeneous chemistry mechanisms. Results from the references are reported at the end of the Table: the average of all the participating models in the intercomparison AeroCom phase III nitrate experiment for 2008, specifying their standard deviation (*STD*), and results from the GMI model (using a similar HYB approach with UPTK reactions on dust and SS) and the EMAC model (*EMAC 2008*, that uses a similar approach to DBCLL_du-ssAlk). Also using the EMAC model, results obtained by the Karydis et al. (2016) study are reported as *EMAC 2005-2008*. Results from models using a similar approach to HYB_du-ssUPTK are reported as *IFS* for Rémy et al. (2022), *LMDz-INCA* for Hauglustaine et al. (2014) and *MetOffice UM* for Jones et al. (2021).

NH	Emissions	Burden	Wet Dep.	Dry Dep.	Total Dep.	Loss	Lifetime
1 11 3(g)	(Tg y-1)	(Tg)	(Tg y-1)	(Tg y-1)	(Tg y-1)	(Tg y-1)	(days)
noHC	61.8	0.86	7.1	54.5	61.7	0.0	5.1
fTEQ_noAlk	61.8	0.05	1.3	39.6	40.9	-20.9	0.3
fTEQ_du-ssAlk	61.8	0.16	1.8	44.2	45.9	-15.9	0.9
HYB_duUPTK	61.8	0.21	1.9	44.7	46.6	-15.1	1.2
HYB_du-ssUPTK	61.8	0.26	2.2	45.6	47.8	-14.0	1.5
HYB_gDU=0.1	61.8	0.28	2.2	46.0	48.3	-13.5	1.7
HYB_DL	61.8	0.38	2.9	46.7	49.6	-12.1	2.2
DBCLL_noAlk	61.8	0.06	1.6	40.4	42.0	-19.8	0.4
DBCLL_duAlk	61.8	0.14	1.8	39.8	41.7	-20.2	0.8
DBCLL_du-ssAlk	61.8	0.35	2.8	45.9	48.6	-13.2	2.0
DBCLL_ClaqAlk	61.8	0.31	2.7	45.5	48.2	-13.6	1.8
AeroCom	62.9	0.20	13.4	18.7	32.1	-32.1	0.7
STD AeroCom	± 3.9	±0.20	± 5.1	± 5.1	±10.2	±12.0	± 0.3
GMI	60.4	0.85	1.1	8.7	9.8	-50.1	5.2
EMAC 2008 ¹	59.3	0.85	0.0	15.5	15.5	-	-
EMAC 2005-2008 ²	-	0.82	-	-	-	-	-
IFS	-	-	-	-	-	-	-
LMDz-INCA	61.3	0.11	13.4	25.9	39.3	-21.2	0.6
MetOffice UM ³	64.7	0.05	6.9	21.1	28.0	-36.8	0.3

¹ From Bian et al. (2017).

² From Karydis et al. (2016).

³ Jones et al. (2021) performs two sensitivity tests to the accommodation coefficient used for NO_3^- formation in the fine mode: *FAST* with 0.193 and *SLOW* with 0.001. Here, results from the *FAST* test are reported on the basis that they present similar fine NO_3^- formation rates to our average fine nitrate results.

Table S11. Results for particle NH_4^+ obtained with the studied heterogeneous chemistry mechanisms. Results from the references are reported at the end of the approach to DBCLL_du-ssAlk). Also using the EMAC model, results obtained by the Karydis et al. (2016) study are reported as EMAC 2005-2008. Results from and results from the GMI model (using a similar HYB approach with UPTK reactions on dust and SS) and the EMAC model (EMAC 2008, that uses a similar models using a similar approach to HYB_du-ssUPTK are reported as IFS for Rémy et al. (2022), LMD7-INCA for Hauglustaine et al. (2014) and MetOffice UM for Table: the average of all the participating models in the intercomparison AeroCom phase III nitrate experiment for 2008, specifying their standard deviation (STD), Jones et al. (2021).

NIH+	Burd	len		Wet D	ep.		Dry D(•da		Total I	Dep.		Produc	tion		Lifetin	ne	
TITNT	(Tg)			(Tg y-	1)		(Tg y-1	()		(Tgy-	1)		(Tg y-1	0		(days)		
Experiment	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total
fTEQ_noAlk	0.30	0.00	0.30	19.2	0.0	19.2	3.0	0.0	3.0	22.2	0.0	22.2	22.2	0.0	22.2	2.5	0.0	2.5
fTEQ_du-ssAlk	0.21	0.00	0.21	14.9	0.0	14.9	2.0	0.0	2.0	16.9	0.0	16.9	16.9	0.0	16.9	2.3	0.0	2.3
HYB_duUPTK	0.21	0.00	0.21	14.3	0.0	14.3	1.9	0.0	1.9	16.2	0.0	16.2	16.2	0.0	16.2	2.3	0.0	2.3
HYB_du-ssUPTK	0.20	0.00	0.20	13.2	0.0	13.2	1.7	0.0	1.7	15.0	0.0	15.0	15.0	0.0	15.0	2.4	0.0	2.4
HYB_gDU=0.1	0.19	0.00	0.19	12.9	0.0	12.9	1.6	0.0	1.6	14.5	0.0	14.5	14.5	0.0	14.5	2.4	0.0	2.4
HYB_DL	0.19	0.00	0.19	11.7	0.0	11.7	1.6	0.0	1.6	13.3	0.0	13.3	13.3	0.0	13.3	2.7	0.0	2.7
DBCLL_noAlk	0.29	0.01	0.30	17.8	0.3	18.1	2.8	0.2	2.9	20.5	0.5	21.0	20.5	0.5	21.0	2.6	3.1	2.6
DBCLL_duAlk	0.30	0.01	0.31	18.9	0.3	19.2	3.1	0.2	3.3	22.1	0.4	22.5	22.1	0.4	22.5	2.5	4.1	2.5
DBCLL_du-ssAlk	0.20	0.02	0.22	12.6	0.2	12.7	1.8	0.1	1.9	14.3	0.3	14.6	14.3	0.3	14.6	2.6	10.8	2.8
DBCLL_ClaqAlk	0.22	0.02	0.23	12.9	0.2	13.1	1.8	0.2	2.0	14.7	0.4	15.1	14.7	0.4	15.1	2.7	7.7	2.8
AeroCom		1	0.32		ı	24.4		I	5.8		1	30.2	1	-	30.4		T	4.3
STD AeroCom	ı		± 0.20	ı	ı	± 10.0		I	±5.8		ı	± 15.8	1	ı	±4.3	ı	ı	± 2.6
GMI	ı		0.48		ı	50.7		I	1.9		ı	52.6		ı	53.0		I	3.4
EMAC 2008^1	ı		0.19	ı	ı	44.5		ı	3.6		ı	48.1	ı			ı	ı	
EMAC 2005-2008 ²	ı	,	0.17		ī			ī			ı		ī				ī	
\mathbf{IFS}^3	ı	·	0.15	ī	ı	17.4		ı	1.4		ı	18.8	ı	ı	18.6	ı	ı	2.9
LMDz-INCA	1	,	0.28	ī	ı	19.2		ī	3.2		ı	22.4	ī	ī	22.4	ī	ı	4.5
MetOffice UM ⁴	ı	ı	0.54	ī	ı	32.1		ı	7.4		ı	32.1	ī	ı	39.2		ı	5.0
1. From Bian et al. (20)	17).																	

2. From Karydis et al. (2016).

3. Fine NO³ reported from neutralization of nitric acid, ammonia and sulfate. Coarse nitrate from heterogeneous chemistry (Rémy et al., 2022).

4. Jones et al. (2021) performs two sensitivity tests to the accommodation coefficient used for NO₃⁻ formation in the fine mode: *FAST* with 0.193 and *SLOW* with 0.001. Here, results from the *FAST* test are reported on the basis that they present similar fine NO_3^- formation rates to our average fine nitrate results

approach to DBCLL_du-ssAlk). Also using the EMAC model, results obtained by the Karydis et al. (2016) study are reported as EMAC 2005-2008. Results from models using a similar approach to HYB_du-ssUPTK are reported as IFS for Rémy et al. (2022), LMDz-INCA for Hauglustaine et al. (2014) and MetOffice UM for Table S12. Results for particle SO_4^2 obtained with the studied heterogeneous chemistry mechanisms. Results from the references are reported at the end of the and results from the GMI model (using a similar HYB approach with UPTK reactions on dust and SS) and the EMAC model (EMAC 2008, that uses a similar Table: the average of all the participating models in the intercomparison AeroCom phase III nitrate experiment for 2008, specifying their standard deviation (STD), Jones et al. (2021).

	S04		S02																		
SO_4^{2-}	Emiss	ions	Emissions	S04 Bu	ırden		S04 ≤	et Dep.		S04 D	ry Dep.		S04 T	otal Dep.		S04 Pr	oduction		S04 L	ifetime	
	(Tgy-	(İ	(Tgy-1)	(Tg)			(Tgy-1	<u> </u>		(Tg y-]	<u>-</u>		(Tgy-]	<u> </u>		(Tg y-1	_		(days)		
Experiment	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total
noHC	0.5	0.0	104.4	4.4E-3	0.00	0.00	0.5	0.0	0.5	0.1	0.0	0.1	0.5	0.0	0.5	0.0	0.0	0.0	3.1	0.0	3.0
fTEQ_noAlk	0.5	0.0	104.4	1.98	0.00	1.98	126.9	0.0	126.9	13.5	0.0	13.5	140.5	0.0	140.5	139.9	0.0	139.9	2.6	0.9	2.6
fTEQ_du-ssAlk	0.5	0.0	104.4	1.82	0.14	1.96	116.7	6.9	123.6	13.0	3.5	16.5	129.7	10.4	140.1	129.1	10.4	139.5	2.6	2.4	2.6
HYB_duUPTK	0.5	0.0	104.4	1.82	0.14	1.96	116.5	7.0	123.5	13.0	3.5	16.4	129.4	10.5	139.9	128.9	10.5	139.3	2.6	2.4	2.6
HYB_du-ssUPTK	0.5	0.0	104.4	1.85	0.14	1.98	116.4	7.1	123.5	12.9	3.5	16.4	129.3	10.6	139.9	128.7	10.6	139.3	2.6	2.4	2.6
HYB_gDU=0.1	0.5	0.0	104.4	1.87	0.12	1.99	117.8	6.1	124.0	12.7	2.9	15.7	130.6	9.1	139.7	130.0	9.0	139.1	2.6	2.4	2.6
HYB_DL	0.5	0.0	104.4	1.85	0.14	1.99	116.4	7.1	123.5	12.9	3.5	16.4	129.3	10.6	139.9	128.7	10.6	139.3	2.6	2.4	2.6
DBCLL_noAlk	0.5	0.0	104.4	1.94	0.04	1.98	124.4	2.0	126.4	13.2	0.9	14.0	137.6	2.9	140.5	137.0	2.9	139.9	2.6	2.5	2.6
DBCLL_duAlk	0.5	0.0	104.4	1.78	0.16	1.94	114.8	8.4	123.1	12.7	4.1	16.8	127.5	12.4	139.9	126.9	12.4	139.3	2.6	2.4	2.5
DBCLL_du-ssAlk	0.5	0.0	104.4	1.76	0.20	1.96	114.9	8.3	123.2	12.7	4.1	16.8	127.6	12.4	140.0	127.1	12.3	139.4	2.5	3.0	2.6
DBCLL_ClaqAlk	0.5	0.0	104.4	1.84	0.13	1.97	117.0	6.9	123.8	12.8	3.3	16.1	129.8	10.1	139.9	129.2	10.1	139.3	2.6	2.4	2.6
AeroCom			122.0			1.80			140.0			14.3			154.3			151.0			4.5
STD AeroCom			± 12.0			± 0.81			± 65.3			± 163.3			± 228.6			± 56.0			± 1.9
GMI			122.0			3.30			140.0			14.3			154.3			151.0			4.5
$EMAC 2008^{1}$			138.0			1.90			302.0			504.0			806.0			187.0			6.0
EMAC 2005-2008 ²						1.78															
IFS ³			70.3			0.367			39.7			1.9			39.7			41.4			3.2
LMDz-INCA						1.26															
MetOffice UM ⁴																					
1. From Bian et al. (201	7).																				

2. From Karydis et al. (2016).

3. Fine NO_3^- reported from neutralization of nitric acid, ammonia and sulfate. Coarse nitrate from heterogeneous chemistry (Rémy et al., 2022).

4. Jones et al. (2021) performs two sensitivity tests to the accommodation coefficient used for NO₃⁻ formation in the fine mode: FAST with 0.0193 and SLOW with 0.001. Here, results from the FAST test are reported on the basis that they present similar fine NO₃⁻ formation rates to our average fine nitrate results

		fTEQ	fTEQ	HYB	HYB	HYB	HYB	DBCLL	DBCLL	DBCLL	DBCLL
Nitrogen burdens	DHOHC	noAlk	du-ssAlk	duUPTK	du-ssUPTK	gDU=0.1	DL	noAlk	duAlk	du-ssAlk	ClaqAlk
$HNO_{3(g)}$	1.06	1.11	0.65	0.44	0.15	0.1	0.16	1.14	0.6	0.56	0.57
$\mathrm{NH}_{3(g)}$	0.71	0.04	0.13	0.17	0.21	0.23	0.31	0.05	0.11	0.28	0.25
$\mathrm{NO}_{(\mathrm{g})}$	0.14	0.18	0.14	0.13	0.11	0.1	0.11	0.19	0.14	0.14	0.14
$\mathrm{NO}_{2(g)}$	0.24	0.27	0.22	0.2	0.17	0.17	0.17	0.28	0.22	0.22	0.22
$\rm N_2O_{5(g)}$	0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.03	0.02	0.02	0.02
$\mathrm{NTR}_{(\mathrm{g})}$	0.44	0.47	0.48	0.48	0.47	0.47	0.47	0.47	0.47	0.48	0.48
$PNA_{(g)}$	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02
$\mathrm{PAN}_{(\mathrm{g})}$	0.8	0.64	0.53	0.49	0.42	0.41	0.42	0.65	0.52	0.52	0.52
$\mathrm{PAN}_{\mathrm{x(g)}}$	0.16	0.13	0.11	0.11	0.09	0.09	0.09	0.14	0.11	0.11	0.11
$\mathrm{PM}_{2.5}\mathrm{NO}_{3(\mathrm{aer})}$	0	0.02	0.15	0.13	0.12	0.11	0.09	0.01	0.22	0.06	0.09
${ m PM}_{2.5-10}{ m NO}_{3({ m aer})}$	0	0	0	0.13	0.27	0.32	0.29	0	0.11	0.18	0.14
$\mathrm{PM}_{2.5}\mathrm{NH}_{4(\mathrm{aer})}$	0	0.23	0.17	0.16	0.15	0.15	0.15	0.22	0.24	0.16	0.17
$PM_{2.5-10}NH_{4(\mathrm{aer})}$	0	0	0	0	0	0	0	0.01	0.01	0.01	0.01
$\mathrm{NO}_{(\mathrm{g})} + \mathrm{NO}_{2(\mathrm{g})} + \mathrm{NO}_{3(\mathrm{g})}$	0.39	0.46	0.36	0.33	0.28	0.28	0.28	0.47	0.37	0.36	0.36
$\mathrm{NTR}_{(\mathrm{g})} + \mathrm{PNA}_{(\mathrm{g})} + \mathrm{PAN}_{(\mathrm{g})} + \mathrm{PAN}_{\mathrm{x}(\mathrm{g})}$	1.44	1.28	1.14	1.09	1.01	0.99	1	1.29	1.13	1.13	1.13
Aerosol nitrate + ammonium	0	0.25	0.31	0.42	0.55	0.58	0.53	0.24	0.57	0.41	0.42
Total nitrogen	3.63	3.15	2.62	2.48	2.19	2.18	2.29	3.22	2.79	2.76	2.74

Table S13. Nitrogen burdens (TgN) for each experiment and species.

References

- Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmospheric Chemistry and Physics, 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
- 15
 - Bleam, W.: Clay Mineralogy and Chemistry, Soil and Environmental Chemistry, pp. 87–146, https://doi.org/10.1016/B978-0-12-804178-9.00003-3, 2017.

Blum, A. E.: Feldspars in Weathering, pp. 595–630, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-011-1106-5_15, 1994. Britannica, The Editors of Encyclopaedia: chlorite, https://www.britannica.com/science/chlorite-mineral, [Online; accessed March 11, 2024],

20 2018.

- Claquin, T., Schulz, M., and Balkanski, Y. J.: Modeling the mineralogy of atmospheric dust sources, Journal of Geophysical Research: Atmospheres, 104, 22 243–22 256, https://doi.org/10.1029/1999JD900416, 1999.
- Essington, M. E., Nelson, J. B., and Holden, W. L.: Gibbsite and Goethite Solubility, Soil Science Society of America Journal, 69, 996–1008, https://doi.org/10.2136/SSSAJ2004.0287, 2005.
- 25 Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmospheric Chemistry and Physics, 14, 11 031–11 063, https://doi.org/10.5194/acp-14-11031-2014, 2014.
 - Hodzic, A., Bessagnet, B., and Vautard, R.: A model evaluation of coarse-mode nitrate heterogeneous formation on dust particles, Atmospheric Environment, 40, 4158–4171, https://doi.org/10.1016/j.atmosenv.2006.02.015, 2006.

Huggett, J.: Clay Minerals, Reference Module in Earth Systems and Environmental Sciences, https://doi.org/10.1016/B978-0-12-409548-

- 30 9.09519-1, 2015.
 - Hulett, G. A. and Allen, L. E.: The solubility of gypsum, Journal of the American Chemical Society, 24, 667–679, https://doi.org/10.1021/JA02021A007/ASSET/JA02021A007.FP.PNG_V03, 1902.

Jones, A. C., Hill, A., Remy, S., Abraham, N. L., Dalvi, M., Hardacre, C., Hewitt, A. J., Johnson, B., Mulcahy, J. P., and Turnock, S. T.: Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office 's Unified Model, Atmospheric

35 Chemistry and Physics, 21, 1–48, https://doi.org/10.5194/acp-21-15901-2021, 2021.

Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., and Lelieveld, J.: Effects of mineral dust on global atmospheric nitrate concentrations, Atmospheric Chemistry and Physics, 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, 2016.

Krueger, B. J., Grassian, V. H., Cowin, J. P., and Laskin, A.: Heterogeneous chemistry of individual mineral dust particles from different dust source regions: The importance of particle mineralogy, Atmospheric Environment, 38, 6253–6261,

40 https://doi.org/10.1016/j.atmosenv.2004.07.010, 2004.

Mindat.org: Chlorite Group, https://www.Mindat.org/min-1016.html, [Online; accessed March 11, 2024], a.

Mindat.org: Feldspar Group, https://www.Mindat.org/min-1624.html, [Online; accessed March 11, 2024], b.

45 National Center for Biotechnology Information: PubChem Compound Summary for CID 92027383, Muscovite, https://pubchem.ncbi.nlm. nih.gov/compound/Muscovite, [Online; accessed January 24, 2024], 2024b.

National Center for Biotechnology Information: PubChem Compound Summary for CID 14833, Hematite, https://pubchem.ncbi.nlm.nih. gov/compound/Hematite, [Online; accessed January 24, 2024], 2024a.

National Center for Biotechnology Information. PubChem Compound Database: PubChem Compound Summary for CID 24928, Calcium Sulfate Dihydrate, https://pubchem.ncbi.nlm.nih.gov/compound/Calcium-Sulfate-Dihydrate, [Online; accessed January 24, 2024], 2024a. National Center for Biotechnology Information. PubChem Compound Database: PubChem Compound Summary for CID 91502, Goethite

- 50 (Fe(OH)O), https://pubchem.ncbi.nlm.nih.gov/compound/Goethite-_Fe_OH_O, [Online; accessed January 24, 2024], 2024b. Nutting, P.: The solution and colloidal dispersion of minerals in water on JSTOR, Washington Academy of Sciences, 22, 261–267, https: //www.jstor.org/stable/24522222, 1932.
 - Nutting, P. G.: THE ACTION OF SOME AQUEOUS SOLUTIONS ON CLAYS OF THE MONTMORILLONITE GROUP, UNITED STATES DEPARTMENT OF THE INTERIOR, pp. 219–235, 1941.
- 55 Rémy, S., Kipling, Z., Huijnen, V., Flemming, J., Nabat, P., Michou, M., Ades, M., Engelen, R., and Peuch, V. H.: Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF, Geoscientific Model Development, 15, 4881–4912, https://doi.org/10.5194/gmd-15-4881-2022, 2022.
 - Schulze, D. G.: CLAY MINERALS, Encyclopedia of Soils in the Environment, 4, 246–254, https://doi.org/10.1016/B0-12-348530-4/00189-2, 2005.
- 60 Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on Mineral Dust, Chemical Reviews, 103, 4883–4939, https://doi.org/10.1021/cr020657y, 2003.
 - Weast, R. C.: CRC Handbook of Chemistry and Physics, Cronus Books, 60 edn., https://www.abebooks.com/servlet/BookDetailsPL? bi=31210018960&searchurl=an%3Dweast%2Brobert%26sortby%3D17%26tn%3Dcrc%2Bhandbook%2Bchemistry%2Bphysics% 2B60th&cm_sp=snippet-_-srp1-_-title1, 1980.
- Webmineral: Albite Mineral Data, http://webmineral.com/data/Albite.shtml, [Online; accessed 11 March 2024], 2008a.
 Webmineral: Anorthite Mineral Data, http://webmineral.com/data/Anorthite.shtml, [Online; accessed 11 March 2024], 2008b.
 Webmineral: Calcite Mineral Data, http://webmineral.com/data/Calcite.shtml, [Online; accessed 11 March 2024], 2008c.
 Webmineral: Gypsum Mineral Data, http://webmineral.com/data/Gypsum.shtml, [Online; accessed 11 March 2024], 2008d.
 Webmineral: Orthoclase Mineral Data, http://webmineral.com/data/Orthoclase.shtml, [Online; accessed 11 March 2024], 2008e.
- 70 Webmineral: Illite Mineral Data, http://webmineral.com/data/Illite.shtml, [Online; accessed 20 October 2022], 2008f. Yang, L.: Title Kaolinite dissolution and precipitation kinetics at 22oC and pH 4 Permalink https://escholarship.org/uc/item/0qz871kp Publication Date, https://escholarship.org/uc/item/0qz871kp, 2008.
 - Zhang, Y. and Muhammed, M.: Solubility of Calcium Sulfate Dihydrate in Nitric Acid Solutions Containing Calcium Nitrate and Phosphoric Acid, Journal of Chemical and Engineering Data, 34, 121–124, https://doi.org/10.1021/je00055a032, 1989.