the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Skillful neural network predictions of Saharan dust
Abstract. Suspended in the atmosphere are millions of tonnes of mineral dust which inter- acts with weather and climate. Accurate representation of mineral dust in weather models is vital, yet remains challenging. Large scale weather models use high power supercomputers and take hours to complete the forecast. Such computational burden allows them to only include monthly climatological means of mineral dust as input states inhibiting their forecasting accuracy. Here, we introduce DustNet a simple, accurate and super fast forecasting model for 24-hours ahead predictions of aerosol optical depth (AOD). DustNet trains in less than 8 minutes and creates predictions in 2.1 seconds on a desktop computer. Created by DustNet predictions outperform the state-of-the-art physics-based model on coarse 1° x 1° resolution at 95 % of grid locations when compared to ground truth satellite data. Our results show DustNet’s potential for fast, accurate AOD fore- casting which could transform our understanding of dust’s impacts on weather patterns.
Status: open (until 23 Oct 2024)
Viewed
Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
56 | 0 | 0 | 56 | 0 | 0 |
- HTML: 56
- PDF: 0
- XML: 0
- Total: 56
- BibTeX: 0
- EndNote: 0
Viewed (geographical distribution)
Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1