Preprints
https://doi.org/10.5194/egusphere-2024-2064
https://doi.org/10.5194/egusphere-2024-2064
26 Nov 2024
 | 26 Nov 2024

Downward and upward revisions of Chinese emissions of black carbon and CO in bottom-up inventories are still required: an integrated analysis of WRF/CMAQ model and EMeRGe observations in East Asia in spring 2018

Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda

Abstract. Accurate estimates of short-lived climate forcers (SLCFs) emissions are required to allow efficient strategies that mitigate climate change to be developed. However, there remain large uncertainties about emissions of SLCFs from Asia. We identified and improved the constraints of combustion-related emissions of black carbon (BC) and CO using the WRF/CMAQ model (v5.0.2) and the EMeRGe airborne observation data for East Asia in spring 2018. We performed case studies of air masses containing emissions from fires near Thailand and emissions from urban areas in the Philippines and China. Chinese emissions were analysed in depth. Unlike observations at ground-based stations, the observations from aircraft used here would not have been strongly influenced by local emissions and near-surface processes. We confirmed that the GFEDv4.1s inventory provided accurate data for emissions from fires near Thailand. However, anthropogenic BC and CO emissions from the Philippines (REASv2.1) were negatively biased. Marked positive and negative differences were found for BC (+1.62 µg m−3) and CO (−400 ppbv) from the HTAPv2.2z emission inventory for Chinese air masses, consistent with the results of previous ground-based studies. The Chinese BC/CO emission ratio, 3.5±0.1 ng m−3 ppb−1, calculated using data from airborne observations in the altitude range ~0.3–1 km also agreed with the ground-based results. Linearly scaling BC emissions using an observation/model ratio (E(BC) = 0.48±0.13) gave our best estimate of 0.65±0.25 (Tg BC) yr-1. The calculated BC/CO and CO/CO2 ratios led us to estimate that emissions from China are 166±65 (Tg CO) yr-1 and 12.4±4.8 (Pg CO2) yr-1. The results suggested that downward and upward revisions of Chinese emissions of BC (−50 %) and CO (+20 %), respectively, are required in HTAPv2.2z emission inventory.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

22 Oct 2025
Assessing BC and CO emissions from China using EMeRGe aircraft observations and WRF/CMAQ modelling
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
Atmos. Chem. Phys., 25, 13429–13452, https://doi.org/10.5194/acp-25-13429-2025,https://doi.org/10.5194/acp-25-13429-2025, 2025
Short summary
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2064', Anonymous Referee #1, 02 Jan 2025
  • RC2: 'Comment on egusphere-2024-2064', Anonymous Referee #2, 26 May 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2064', Anonymous Referee #1, 02 Jan 2025
  • RC2: 'Comment on egusphere-2024-2064', Anonymous Referee #2, 26 May 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Phuc Ha on behalf of the Authors (21 Jul 2025)  Author's tracked changes   Manuscript 
EF by Polina Shvedko (28 Jul 2025)  Author's response 
ED: Referee Nomination & Report Request started (29 Jul 2025) by Andreas Hofzumahaus
RR by Anonymous Referee #1 (21 Aug 2025)
RR by Anonymous Referee #2 (22 Aug 2025)
ED: Publish subject to minor revisions (review by editor) (22 Aug 2025) by Andreas Hofzumahaus
AR by Phuc Ha on behalf of the Authors (29 Aug 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (31 Aug 2025) by Andreas Hofzumahaus
AR by Phuc Ha on behalf of the Authors (31 Aug 2025)

Journal article(s) based on this preprint

22 Oct 2025
Assessing BC and CO emissions from China using EMeRGe aircraft observations and WRF/CMAQ modelling
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
Atmos. Chem. Phys., 25, 13429–13452, https://doi.org/10.5194/acp-25-13429-2025,https://doi.org/10.5194/acp-25-13429-2025, 2025
Short summary
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda

Viewed

Total article views: 1,092 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
941 125 26 1,092 70 24 49
  • HTML: 941
  • PDF: 125
  • XML: 26
  • Total: 1,092
  • Supplement: 70
  • BibTeX: 24
  • EndNote: 49
Views and downloads (calculated since 26 Nov 2024)
Cumulative views and downloads (calculated since 26 Nov 2024)

Viewed (geographical distribution)

Total article views: 1,120 (including HTML, PDF, and XML) Thereof 1,120 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 22 Oct 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO and 12.4±4.8 PgCO2, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory.
Share