Supplements

Table S1. Information on seven sub-air masses in the CHN case during E-AS-08 and E-AS-09. Bold and plain numbers in the fifth – ninth columns indicate data from observations and simulations.

Segments	Flight	Periods	N	BC/CO	CO/CO ₂	BC/CO ₂	BC Mean(Max.)	Mean(Max.)-baseline-∆CO
(CHN case)	altitudes			Obs.	Obs.	Obs.	Obs.	Obs.
				Mod.			Mod.	Mod.
Units	km	UTC (s)		ng m ⁻³ ppb ⁻¹	ppb ppm ⁻¹	ng m ⁻³ ppm ⁻¹	$\mu g m^{-3}$	ppbv
E-AS-08 S1	0.3	022715-	77	4.7	16.5	77	0.76 (1.01)	320 (360)- 159- 161
		024615		8.3			1.79 (1.87)	250 (261)
E-AS-08 S2	1	024746-	89	3.9	22.6	82	0.45 (0.73)	268 (303)- 153- 115
		030946		13.9			1.22 (1.29)	191 (198)- 104- 87
E-AS-08 S3	1	042501-	82	3.9	18.0	48	0.62 (0.94)	314 (387)- 152- 162
		044516		12.6			2.00 (2.12)	263 (274)- 104- 159
E-AS-08 S4	0.3	044716-	203	2.6	21.6	60	1.05 (1.55)	367 (537)
		053746		11.5			2.05 (2.60)	278 (320)- 101- 178
E-AS-08 S5	1	053746-	113	2.4	19.2	24	1.11 (1.66)	433 (628)
		060701		12.4			1.76 (2.10)	239 (264)- 97- 142
E-AS-09 S1	1	025800-	99	2.7	16.0	39	0.64 (0.88)	309 (349)- 75- 234
		032415		10.7			1.45 (1.53)	219 (226)- 84- 135
E-AS-09 S2	0.3	032645-	213	3.8	24.3	98	0.89 (1.24)	372 (415)- 142- 230
		041945		12.6			1.77 (1.98)	246 (262)- 105- 140
NS-CEC:			415	2.9	19.5	59	0.85 (1.66)	371 (628)
E-AS-08				10.4			1.89 (2.60)	253 (320)- 78- 175
S4–5,								
E-AS-09 S1								
S-CEC:			563	3.5	22.0	76	0.64 (1.24)	305 (415)- 122- 183
E-AS-08				11.2			1.59 (2.12)	229 (274)- 88- 141
S1–3,								
E-AS-09 S2								
All			872	3.5	21.1	77	0.84 (1.66)	351 (628)-106- 245
				10.5			1.77 (2.60)	246 (320)- 78- 168

Table S2. Emissions of BC, CO, and CO₂ from China in 2018 (or the most recent year stated in the first column) were prescribed in bottom-up inventories or other references (A) and this study (B). In part A, the numbers in brackets indicate the relative biases ("+" for positive, "-" for negative; unit %) of the emission in 2018 to the values estimated by E(BC)-based method (first number) and E(CO)-based method (second number). In B part, the first row shows emissions in CMAQ_HTAPv2.2z; the numbers in brackets show the percentage bias needs to be reduced in HTAPv2.2z to meet the values estimated by E(BC) or E(CO) methods, respectively. The last two rows show estimated emissions by E(BC) and E(CO) in this study, and the numbers in brackets show uncertainty ranges in Tg vr⁻¹.

	T- DC1	T- CO1	T- CO1	Defense v / Neter			
	1g BC yr (%, %)	1g CO yr - (%, %)	1g CO2yr - (%, %)	References / Notes			
A. Other references							
MEICv1.0 (2010)	1.76	171	10,124	Li et al., 2017			
Zheng (interpolated	1.17 (+80, +53)	132 (-20, -32)	10,434 (-16, -28)	Zheng et al., 2018, 2021			
for BC, CO; 2017							
for CO ₂)							
REASv2.1 (2008)	1.59	202	8,155	Kurokawa et al., 2013			
REASv3.2 (2015)	1.64	165	11,941	Kurokawa and Ohara, 2020			
HTAPv3	1.29 (+98, +68)	129 (-22, -34)	/	Crippa et al., 2023			
CEDS (CMIP6)	2.54	/	/	Hoesly et al., 2018			
(2014)				-			
CEDS	1.22 (+87, +59)	150 (-10, -23)	10,200 (-17, -30)	O'Rourke et al., 2021			
v_2021_02_05							
ECLIPSEv6b	0.96 (+47, +25)	137 (-18, -30)	10,210 (-17, -30)	IIASA 2019; Klimont et al.			
(interpolated)				2017			
EDGARv6.1	1.11 (+71, +45)	114 (-32, -42)	11,499 (-7, -21)	https://edgar.jrc.ec.europa.eu/			
				index.php/dataset_ap61			
EDGAR_v8.0_GHG	/	/	11,554 (-6, -20)	Crippa et al., 2023			
GCB	/	/	9,964 (-19, -31)	Friedlingstein et al., 2020			
CO_TCR2 (2019-	/	153 (-8, -22)	/	Miyazaki et al., 2020			
2020)							
Fukue (Estimated)	1.06 (+62, +38)	/	/	Kanaya et al., 2020			
B. This study							
CMAQ_HTAPv2.2z	$1.3\overline{6}(452,444)$	134 (†24, †46)	/	Model			
E(BC)HTAPv2.2z -	0.65 (0.40-0.90)	166 (102–231)	12,355 (7,542–17,168)	Estimated and uncertainty			
based estimated	· · · · ·	. ,		range			
E(CO)HTAPv2.2z -	0.77 (0.54–1.00)	195 (137–254)	14,521 (10,163–18,880)	Estimated and uncertainty			
based estimated	. ,			range			

15 Table S3. Emissions of BC from hard coal, grade 3 (HC3) grouped by abatement measures and sectors prescribed in ECLIPv6b inventory (Klimont, personal communications, 2021)

Abatement Measures and Sectors	Max of Level of activity [PJ]	Max of Unabated emission factor [kt/unit of activity]	Max of Removal efficiency [%]	Max of Abated emission factor [kt/unit of activity]	Average of Capacities controlled [%]	Sum of Emissions [kt BC]
Hard coal, grade 3 (HC3)	8395.3161	0.2200	99.02	0.2200	49.96	410.2067
Cyclone (MB_CYC)	1312.8621	0.0040	11.00	0.0036	89.63	3.9924
Medium boilers (<50MW) - automatic (DOM MB A)	1191.7341	0.0040	11.00	0.0036	83.12	3.5801
Medium boilers (<1MW) - manual (DOM_MB_M)	121.1281	0.0040	11.00	0.0036	96.36	0.4123
No control (NOC)	4163.1457	0.2200	0.00	0.2200	58.85	405.5393
Medium boilers (<50MW) - automatic (DOM MB A)	1124.8112	0.0040	0.00	0.0040	4.20	0.1884
Medium boilers (<1MW) - manual (DOM_MB_M)	119.0261	0.0040	0.00	0.0040	4.20	0.0199
Single house boilers (<50 kW) - manual (DOM_SHB_M)	23.3138	0.2150	0.00	0.2150	90.00	4.0752
Cooking stoves (DOM_STOVE_C)	2526.4034	0.1350	0.00	0.1350	95.00	324.0112
Heating stoves (DOM_STOVE_H)	369.5911	0.2200	0.00	0.2200	95.00	77.2445
Coal single house boiler new (SHB NEW C)	23.3138	0.2150	20.00	0.1720	10.00	0.3622
Medium boilers (<1MW) - manual (DOM_SHB_M)	23.3138	0.2150	20.00	0.1720	10.00	0.3622
Briquette stove (STV BRIQ)	2895.9945	0.2200	99.02	0.0022	5.00	0.3128
Cooking stoves (DOM_STOVE C)	2526.4034	0.1350	98.40	0.0022	5.00	0.2729
Heating stoves (DOM STOVE H)	369.5911	0.2200	99.02	0.0022	5.00	0.0399

Table S4. BC and CO information from the Chinese air mass was detected in EMeRGe flights (CHN case) and at Fukue Island.

- 20 Simulated and observed BC mean concentrations, enhanced CO mean concentrations (ΔCO) in observations and simulations, correction factors (E(BC), E(CO)), and observed BC/CO ratios are displayed. The 2nd column shows data in the CHN case in order of all eight segments / NS-CEC air mass / S-CEC air mass. The 3rd column shows data at Fukue Island in the following order: spring peaks mean during 24th 28th March 2018 (SP18) from N-CEC air mass / S-CEC air mass. The 4th column shows data at Fukue Island in order of spring 2018 mean (S18) from all Chinese sources (WCN) / N-CEC air mass / S-CEC air mass. E(BC) for the CHN
- 25 case regards HTAPv2.2z, while data at Fukue regards REASv2.1(2008) (Kurokawa et al., 2013). The number of data used for the CHN case is 15-second intervals, while data at Fukue Island is hourly. E(BC) and E(CO) for data at Fukue Island are from Kanaya et al. (2020).

	All CHN case	Fukue:	Fukue:	
Number of recorded data	978 / 415 / 562 (15-s)	$\frac{3110}{38/37}$ (1-h)	210/93/101(1-b)	
$\mathbf{M} = \begin{bmatrix} \mathbf{D} \mathbf{C} \end{bmatrix} 1 = \mathbf{C} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 = \mathbf{C} \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} 1 \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} 1 \end{bmatrix} $	0 78 / 0 85 / 0 64			
Mean [BC] observation ($\mu g m^{-1}$)	0.7870.8370.84	0.92/0.07	0.51/0.50/0.50	
Mean [BC] simulation ($\mu g m^{-3}$)	1.69 / 1.89 / 1.59	/	/ 0.79 / 0.89	
Mean [Δ CO] observation (ppb)	226 / 338 / 183	254 / 190	130 / 142 / 131	
Mean [Δ CO] simulation (ppb)	158 / 175 / 141	/	/	
E(BC)	0.46 / 0.45 / 0.40	/	/ 0.6 / 0.48	
E(CO)	1.43 / 1.93 / 1.29	/	/ 1.02 / 0.87	
Observed BC/CO (ng m ⁻³ ppb ⁻¹)	3.5 / 2.9 / 3.5	3.6/3.5	4.9 / 4.4 / 5.2	

30 Table S5. BC/CO and CO/CO₂ ratios from biomass burning in the THL case and recorded in other references

References	BC/CO (ng m ⁻³ ppb ⁻¹)	CO/CO ₂ (%)	Characteristics
This study (THL case)	7.1	4	
	7.0 ± 4.1	8.9 ± 2.6	Emission inventory for tropical forests,
Akagi et al., 2011	7.3 ± 4.3	5.9 ± 1.6	savanna,
	16 - 21	4.1 - 6	and garbage burning and open cooking
Lee et al., 2018	6.98		Simulated by WRF-Chem (FINNv1.5) for fire biomass burning in Southeast Asia 2002 – 2008
W. 1 . 1 2000	7	12 + 1 0	Biomass burning under plumes sampled by flights
Warneke et al., 2009	/ ± 4	4.2 ± 1.9	over Alaska in April 2008: - Lake Baikal.
	10±5	5.0 ± 2.5	- Agricultural fires in Kazakhstan
	8.5 ± 5.4	1.5 ± 0.5	Flaming-phase fires from Asian biomass burning.
Kondo et al., 2011			Summer mix fires in North America and Canada:
	$1.7{\pm}0.8$	22.2 ± 11.8	- Smoldering
	3.4±1.6	2.6 ± 1.0	- Flaming
Zhu et al 2019	> 7		Biomass burning air mass observed at Rishiri Island
	- ,		(Japan)
Chi et al., 2013, Cristofanelli et al., 2013	21.8 - 29.8		Agricultural fires
Chi et al., 2013	9.3		Winter air masses affected by anthropogenic emissions.
Paris et al., 2009	4.1; 6.8	4.6 ± 2.0	One-day fresh flaming plumes
V 1 - 1 2017	6.1–6.3	10.0 ± 0.6	One-day fresh flaming plumes
Vasileva et al. 2017		15.2 ± 0.7	Dominantly smouldering fires
Pirjola et al., 2015		3.2	Dominantly smouldering fires
Cofer et al., 1989, 1998;			
Goode et al., 2000;			
Laursen et al., 1992;		6.16	Aircraft measurements of forest fire plumes in the
McRae et al., 2006;		6-16	northern US, Canada, Alaska, and Siberia
Simpson et al., 2011:			, , , ,
Urbanski et al., 2009			

Figure S1. The left column shows temperature (black) and relative humidity (cyan) during the flights; the right column shows the H₂O mass mixing ratio by observation (black) and simulation (red). Red and black boxes show investigated flight segments (similar to Figs. 2 and 3); corresponding cases are noted in black abbreviations.

Figure S2. (a) Japan's PM_{2.5} levels at 14:00 JST from 1st to 5th April 2018, according to Ministry of the Environment Air Pollutant Wide-Area Monitoring System (https://soramame.env.go.jp/) and (b) Vertical profiles of BC (left) and CO (right) in observations (black: batches for mean) and simulations (red: solid lines for mean, dashed lines for median, vertical bars for minimum and maximum values). Map graphics created by the National Institute for Environmental Studies, Japan.

Figure S3. HYSPLIT backward trajectories for seven segments in the CHN case. Numbers in blue and red indicate observed and simulated BC/CO ratios, respectively.

Figure S4. Observed BC/CO concentration ratios calculated for seven segments in CHN case. The dashed boxes in the legend indicate the functions of NS-CEC sub-air masses (lower BC/CO ratios than S-CEC sub-air masses). The air masses from NS-CEC include segments E-AS-08 S4–5 and E-AS-09 S1 with the data in batches and regression lines in red. The air masses from S-CEC include segments E-AS-08 S1–3 and E-AS-09 S2 with the data in open circles and regression lines in black. The total linear regression line for all data is shown in blue. Regression functions are shown in the same colour as the dataset.

Figure S5. (a) BC and (b) CO emissions in CMAQ's emissions inventories, including HTAPv2.2z. Loose dashed boxes for the THL case. (c) BC/CO emission ratio from GFED inventory and (d) HTAPv2.2z inventory (without JEI-DB data for Japan).

55 Figure S6. Influences of Accumulated Precipitation along Trajectories (APT) and altitudes to observed (So) and simulated (Sm) BC/CO, E(BC), and E(CO). Columns show BC/CO values scaled to the left axis; grey columns and black line for aircraft data; red columns and line for CMAQ simulation; first and second columns in each set show data at 900 m and 300 m, respectively, while lines show values from all data, all altitudes. Oranges and greens represent E(BC) and E(CO), respectively, scaled to the right axis; long and short boxes show data at 900 m and 300 m, respectively, while lines show values from all data, all altitudes. The lower panel

60 shows the amount of data extracted for each case.