Preprints
https://doi.org/10.5194/egusphere-2024-1984
https://doi.org/10.5194/egusphere-2024-1984
19 Jul 2024
 | 19 Jul 2024

Surrogate-based model parameter optimization in simulations of the West African monsoon

Matthias Fischer, Peter Knippertz, and Carsten Proppe

Abstract. The West African monsoon (WAM) system is a critical climatic phenomenon with significant socio-economic impacts on millions of people. Despite many advancements in numerical weather and climate models, accurately representing the WAM remains a challenge due to its intricate dynamics and inherent uncertainties. Building upon our previous work utilizing the ICON (Icosahedral Nonhydrostatic) numerical model to construct statistical surrogate models for quantities of interest (QoIs) characterizing the WAM, this paper focuses on the optimization of the three uncertain model parameters entrainment rate, fall speed of ice, and soil moisture evaporation fraction through innovative multi-objective optimization (MOO) techniques. The problem is approached in two distinct ways: (1) Optimization of 15 designated QoIs such as the latitude and magnitude of the African rain belt or African easterly jet, using existing surrogate models and (2) optimization of twelve 2D meteorological output fields such as precipitation, cloud cover, and pressure, using new surrogate models that employ principal component analysis. The objectives subject to minimization in the MOO process are defined as the difference between the surrogate model and reference data for each QoI or output field, respectively. As reference data, Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement mission are used for precipitation and the ERA5-reanalysis data from the European Centre for Medium-Range Weather Forecasts are used for all other quantities. The multi-objective optimization problems are tackled through two strategies: (1) Assignment of weights with uncertainties to the objectives based on expert opinion and (2) variation of these weights in order to assess their influence on the optimal values of the uncertain model parameters. Results show that the ICON model is already generally well tuned for the WAM system. However, a lower entrainment parameter would lead to a more accurate simulation of accumulated precipitation, averaged 2 m dew point temperature and mean sea level pressure over the considered domain (15° W to 15° E, 0° N to 25° N). Improvement of 2D output fields instead of QoIs is barely possible with the considered parameters, which confirms meaningful default values of the model parameters for the region. Nevertheless, optimal model parameters strongly depend on the assigned weights for the objectives. To further enhance the accuracy of climate simulations and potentially improve weather predictions, it is crucial to prioritize the refinement of the overall physical models, including the reduction of inherent structural errors, rather than solely adjusting the uncertain parameters in existing model parametrizations. Nevertheless, our methodology demonstrates the potential of integrating statistical and expert-driven approaches to assess and improve the simulation accuracy of the WAM. The findings underscore the importance of considering uncertainties in MOO and the need for a holistic understanding of the WAM's dynamics to enhance prediction skills.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Matthias Fischer, Peter Knippertz, and Carsten Proppe

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1984', Anonymous Referee #1, 09 Aug 2024
  • RC2: 'Comment on egusphere-2024-1984', Anonymous Referee #2, 15 Aug 2024
  • AC1: 'Comment on egusphere-2024-1984', Matthias Fischer, 20 Sep 2024
  • EC1: 'Comment on egusphere-2024-1984', Tim Woollings, 23 Sep 2024

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1984', Anonymous Referee #1, 09 Aug 2024
  • RC2: 'Comment on egusphere-2024-1984', Anonymous Referee #2, 15 Aug 2024
  • AC1: 'Comment on egusphere-2024-1984', Matthias Fischer, 20 Sep 2024
  • EC1: 'Comment on egusphere-2024-1984', Tim Woollings, 23 Sep 2024
Matthias Fischer, Peter Knippertz, and Carsten Proppe
Matthias Fischer, Peter Knippertz, and Carsten Proppe

Viewed

Total article views: 547 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
195 47 305 547 9 14
  • HTML: 195
  • PDF: 47
  • XML: 305
  • Total: 547
  • BibTeX: 9
  • EndNote: 14
Views and downloads (calculated since 19 Jul 2024)
Cumulative views and downloads (calculated since 19 Jul 2024)

Viewed (geographical distribution)

Total article views: 518 (including HTML, PDF, and XML) Thereof 518 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Dec 2024
Download
Short summary
The West African monsoon is vital for millions, but difficult to represent with numerical models. Our research aims at improving monsoon simulations by optimizing three model parameters—entrainment rate, ice fall speed, and soil moisture evaporation—using an advanced surrogate-based multi-objective optimization framework. Results show that tuning these parameters can improve certain monsoon characteristics, sometimes, however, at the expense of others, yet highlighting the power of our approach.