Preprints
https://doi.org/10.5194/egusphere-2024-1956
https://doi.org/10.5194/egusphere-2024-1956
30 Jul 2024
 | 30 Jul 2024

Beyond Total Impervious Area: A New Lumped Descriptor of Basin-Wide Hydrologic Connectivity for Characterizing Urban Watersheds

Francesco Dell'Aira and Claudio I. Meier

Abstract. Urbanization impacts on hydrologic response are typically indexed as a function of the fraction of total impervious area (TIA), i.e., the proportion of impervious areas in a basin. This implicitly assumes that changes in flood characteristics are somehow proportional to the extents of land-development, without considering that such impacts may vary widely depending on the location of the developed areas with respect to each other, the less-developed land patches, the stream network, and the basin outlet. In other words, TIA is blind to the spatial arrangement of the different types of land patches within a basin, and to the nuanced ways in which runoff volumes are differentially generated over them and then subsequently retained or detained, as they are routed towards the stream network and then the outlet. To overcome such limitations, we propose a new lumped index that measures the impacts of urbanization on basin response in terms of the emerging hydrologic connectivity, the distributed, directional basin property driven by topographically induced runoff pathways and locally affected by the different land-use/land-cover types present in a watershed. This alternative, hydrologic-connectivity-based index of urbanization (HCIU) displays sensitivity to the spatial arrangement of both fully developed as well as less developed or undeveloped patches, each with different degrees of imperviousness, roughness, and other characteristics affecting their abilities to either generate or else retain/detain runoff, reflecting their distinct localized effects on hydrologic connectivity. The proposed HCIU can be readily obtained in a GIS environment from easily available raster geospatial data. We found that HCIU improves the predictive power of regional equations for peak flow in three large case-study homogeneous regions, when used in place of the traditional TIA.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

25 Feb 2025
Beyond total impervious area: a new lumped descriptor of basin-wide hydrologic connectivity for characterizing urban watersheds
Francesco Dell'Aira and Claudio I. Meier
Hydrol. Earth Syst. Sci., 29, 1001–1032, https://doi.org/10.5194/hess-29-1001-2025,https://doi.org/10.5194/hess-29-1001-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Scientists and engineers need better indices to frame the hydrologic effects of land...
Share