Preprints
https://doi.org/10.5194/egusphere-2024-1879
https://doi.org/10.5194/egusphere-2024-1879
09 Jul 2024
 | 09 Jul 2024

Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model

Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo

Abstract. Projections of global climate change and Arctic amplification are sensitive to the representation of low-level cloud phase in climate models. Ice-nucleating particles (INPs) are necessary for primary cloud ice formation at temperatures above approximately -38 °C, and thus significantly affect cloud phase and cloud radiative effect. Due to their complex and insufficiently understood variability, INPs constitute an important modelling challenge, especially in remote regions with few observations, such as the Arctic. In this study, INP observations were carried out at Andenes, Norway in March 2021. These observations were used as a basis for an Arctic-specific and purely temperature-dependent INP parameterization, and implemented into the Norwegian Earth System Model. This implementation results in an annual average increase in cloud liquid water path (CLWP) of 70 % for the Arctic, and improves the representation of cloud phase compared to satellite observations. The change in CLWP in boreal autumn and winter is found to likely be the dominant contributor to the annual average increase in net surface cloud radiative effect of 2 W m-2. This large surface flux increase brings the simulation into better agreement with Arctic ground-based measurements. Despite that the model cannot respond fully to the INP parameterization change due to fixed sea surface temperatures, Arctic surface air temperature increases with 0.7 °C in boreal autumn. These findings indicate that INPs could have a significant impact on Arctic climate, and that a region-specific INP parameterization can be a useful tool to improve cloud representation in the Arctic region.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

05 Feb 2025
Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025,https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-1879', Lin Lin, 08 Aug 2024
    • AC1: 'Reply on CC1', Astrid Bragstad Gjelsvik, 06 Sep 2024
  • RC1: 'Comment on egusphere-2024-1879', Anonymous Referee #1, 11 Aug 2024
  • RC4: 'Comment on egusphere-2024-1879', Anonymous Referee #2, 16 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-1879', Lin Lin, 08 Aug 2024
    • AC1: 'Reply on CC1', Astrid Bragstad Gjelsvik, 06 Sep 2024
  • RC1: 'Comment on egusphere-2024-1879', Anonymous Referee #1, 11 Aug 2024
  • RC4: 'Comment on egusphere-2024-1879', Anonymous Referee #2, 16 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Astrid Bragstad Gjelsvik on behalf of the Authors (28 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (30 Oct 2024) by Farahnaz Khosrawi
RR by Anonymous Referee #2 (11 Nov 2024)
ED: Publish subject to technical corrections (11 Nov 2024) by Farahnaz Khosrawi
AR by Astrid Bragstad Gjelsvik on behalf of the Authors (03 Dec 2024)  Manuscript 

Journal article(s) based on this preprint

05 Feb 2025
Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025,https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo

Model code and software

INP-Andenes-2021-NorESM2 Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Zachary McGraw, Stefan Hofer, and Trude Storelvmo https://github.com/astridbg/INP-Andenes-2021-NorESM2

Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo

Viewed

Total article views: 1,043 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
558 132 353 1,043 19 17
  • HTML: 558
  • PDF: 132
  • XML: 353
  • Total: 1,043
  • BibTeX: 19
  • EndNote: 17
Views and downloads (calculated since 09 Jul 2024)
Cumulative views and downloads (calculated since 09 Jul 2024)

Viewed (geographical distribution)

Total article views: 1,022 (including HTML, PDF, and XML) Thereof 1,022 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 05 Feb 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Share