Preprints
https://doi.org/10.5194/egusphere-2024-1780
https://doi.org/10.5194/egusphere-2024-1780
17 Jul 2024
 | 17 Jul 2024

Measurement Report: An investigation of the spatiotemporal variability of aerosol in the mountainous terrain of the Upper Colorado River Basin from SAIL-Net

Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson

Abstract. In the Western US and similar topographic regions across the world, precipitation in the mountains is crucial to the local and downstream freshwater supply. Atmospheric aerosols can impact clouds and precipitation by acting as cloud condensation nuclei (CCN) and ice nucleating particles (INP). Previous studies suggest there is increased aerosol variability in these regions due to the complex terrain, but none have quantified the extent of this variability. In fall 2021, Handix Scientific contributed to the US Department of Energy (DOE)-funded Surface Atmosphere Integrated field Laboratory (SAIL) in the East River Watershed (ERW), CO, USA by deploying SAIL-Net, a novel network of six aerosol measurement nodes spanning the horizontal and vertical domains of SAIL. The ERW is a topographically diverse region where single measurement sites can miss important observations of aerosol-cloud interactions. Each measurement node included a small particle counter (POPS); a miniature CCN counter (CloudPuck); and a filter sampler (TRAPS) for INP analysis. SAIL-Net studied the spatiotemporal variability of aerosols and the usefulness of dense measurement networks in complex terrain. After the project’s completion in summer 2023, we analyzed the data to explore these topics. We found increased variability compared to a similar study over flat land. This variability was correlated with the elevation of the sites, and the extent of the variability changed seasonally. These data and analysis stand as a valuable resource for continued research into the role of aerosols in the hydrologic cycle and as the foundation for the design of measurement networks in complex terrain.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

03 Mar 2025
Measurement report: An investigation of the spatiotemporal variability in aerosols in the mountainous terrain of the upper Colorado River basin using SAIL-Net
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
Atmos. Chem. Phys., 25, 2745–2762, https://doi.org/10.5194/acp-25-2745-2025,https://doi.org/10.5194/acp-25-2745-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was...
Share