Preprints
https://doi.org/10.5194/egusphere-2024-1742
https://doi.org/10.5194/egusphere-2024-1742
26 Jun 2024
 | 26 Jun 2024

Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand

Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah

Abstract. With mountainous topography and exposure to mid-latitude westerly storms causing frequent atmospheric river landfall and associated hydro-hazards, medium-range forecasting of extreme precipitation is a critical imperative for New Zealand. Here, the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) is applied to two variables in forecast week 2, total precipitation (TP-EFI) and vertically integrated water vapour transport (IVT-EFI). Results reveal the TP-EFI sometimes outperforms the IVT-EFI in capturing extreme precipitation events – in contrast to past Europe-based research and indicating a need to develop further our conceptual understanding of the predictability of extreme precipitation in different geographical contexts.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

13 Feb 2025
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1742', Anonymous Referee #1, 01 Jul 2024
    • AC1: 'Reply on RC1', Daniel Kingston, 18 Sep 2024
  • RC2: 'Comment on egusphere-2024-1742', Anonymous Referee #2, 15 Jul 2024
    • AC2: 'Reply on RC2', Daniel Kingston, 18 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1742', Anonymous Referee #1, 01 Jul 2024
    • AC1: 'Reply on RC1', Daniel Kingston, 18 Sep 2024
  • RC2: 'Comment on egusphere-2024-1742', Anonymous Referee #2, 15 Jul 2024
    • AC2: 'Reply on RC2', Daniel Kingston, 18 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (06 Oct 2024) by Joaquim G. Pinto
AR by Daniel Kingston on behalf of the Authors (15 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (20 Nov 2024) by Joaquim G. Pinto
RR by Anonymous Referee #2 (22 Nov 2024)
ED: Publish as is (29 Nov 2024) by Joaquim G. Pinto
AR by Daniel Kingston on behalf of the Authors (01 Dec 2024)

Journal article(s) based on this preprint

13 Feb 2025
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah

Viewed

Total article views: 361 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
233 98 30 361 21 24
  • HTML: 233
  • PDF: 98
  • XML: 30
  • Total: 361
  • BibTeX: 21
  • EndNote: 24
Views and downloads (calculated since 26 Jun 2024)
Cumulative views and downloads (calculated since 26 Jun 2024)

Viewed (geographical distribution)

Total article views: 346 (including HTML, PDF, and XML) Thereof 346 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Feb 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Share