Preprints
https://doi.org/10.5194/egusphere-2024-1650
https://doi.org/10.5194/egusphere-2024-1650
14 Jun 2024
 | 14 Jun 2024

Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model

Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen

Abstract. The European Beyond EPICA – Oldest Ice consortium is currently conducting an ice core drilling project at Little Dome C (LDC) in Antarctica with the aim of retrieving a continuous ice core up to 1.5 Ma. In order to determine the age of the ice at a given depth, 1D numerical models are often employed. However, they do not take into account any effects due to horizontal flow. We present a 2.5D inverse model that determines the age–depth profile along a flow line from Dome C (DC) to LDC that is assumed to be stable in time. The model is constrained by dated radar internal reflecting horizons. Surface velocity measurements are used to determine the flow line and ascertain the flow tube width, which also allows the model to consider lateral divergence. This new model therefore improves on the results produced by 1D models previously applied to the DC area. By inferring a mechanical ice thickness, the model predicts either the thickness of a basal layer of stagnant ice or a basal melt rate.

Results show that the deepest ice at Beyond EPICA Little Dome C (BELDC) originates from around 15 km upstream. The oldest ice with useful age resolution, i.e. with an age density of 20 kyr m-1, is predicted to be 1.12 Ma at BELDC. Over the LDC area, the 2.5D model predicts a basal layer 200–250 m thick at the base of the ice sheet. Modelled ice particle trajectories suggest that this layer could be composed of stagnant ice, accreted ice or even disturbed ice containing debris. We explore the possibilities, though this is an open question that may only be answered by analysis the Beyond EPICA ice core once it has been drilled. Finally, we discuss in detail a thinning in the basal layer which is less than predicted by the model, as observed in other ice cores. This could mean that modelled ages are significantly over-estimated in the deepest part of the ice column. Given that the age estimate from the 2.5D model is younger than previous estimates, we suggest that horizontal flow is an important factor in this region. However, our model assumes that the flow line features such as flow direction and dome location have not change over the time period considered, which might not be the case.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

01 Oct 2025
Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
The Cryosphere, 19, 4125–4140, https://doi.org/10.5194/tc-19-4125-2025,https://doi.org/10.5194/tc-19-4125-2025, 2025
Short summary
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1650', Anonymous Referee #1, 06 Aug 2024
    • AC1: 'Reply on RC1', Ailsa Chung, 14 Mar 2025
  • RC2: 'Comment on egusphere-2024-1650', Anonymous Referee #2, 10 Sep 2024
    • AC2: 'Reply on RC2', Ailsa Chung, 14 Mar 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1650', Anonymous Referee #1, 06 Aug 2024
    • AC1: 'Reply on RC1', Ailsa Chung, 14 Mar 2025
  • RC2: 'Comment on egusphere-2024-1650', Anonymous Referee #2, 10 Sep 2024
    • AC2: 'Reply on RC2', Ailsa Chung, 14 Mar 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (06 Apr 2025) by Lei Geng
AR by Ailsa Chung on behalf of the Authors (18 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (25 Apr 2025) by Lei Geng
RR by Anonymous Referee #3 (28 May 2025)
RR by Anonymous Referee #4 (29 May 2025)
ED: Publish subject to minor revisions (review by editor) (30 May 2025) by Lei Geng
AR by Ailsa Chung on behalf of the Authors (11 Jun 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (16 Jun 2025) by Lei Geng
AR by Ailsa Chung on behalf of the Authors (17 Jun 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

01 Oct 2025
Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
The Cryosphere, 19, 4125–4140, https://doi.org/10.5194/tc-19-4125-2025,https://doi.org/10.5194/tc-19-4125-2025, 2025
Short summary
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen

Viewed

Total article views: 1,703 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,339 322 42 1,703 80 69 70
  • HTML: 1,339
  • PDF: 322
  • XML: 42
  • Total: 1,703
  • Supplement: 80
  • BibTeX: 69
  • EndNote: 70
Views and downloads (calculated since 14 Jun 2024)
Cumulative views and downloads (calculated since 14 Jun 2024)

Viewed (geographical distribution)

Total article views: 1,696 (including HTML, PDF, and XML) Thereof 1,696 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 Oct 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
Share