Preprints
https://doi.org/10.5194/egusphere-2024-1620
https://doi.org/10.5194/egusphere-2024-1620
12 Jul 2024
 | 12 Jul 2024

Calibrating calving parameterizations using graph neural network emulators: Application to Helheim Glacier, East Greenland

Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar

Abstract. Calving is responsible for the retreat, acceleration, and thinning of numerous tidewater glaciers in Greenland. An accurate representation of this process in ice sheet numerical models is critical in order to better predict the future response of the ice sheet to climate change. While traditional numerical models have succeeded in simulating ice dynamics and calving under specific parameterized conditions, the computational demand of these models makes it difficult to efficiently fine-tune these parameterizations, adding to the overall uncertainty in future sea level rise. Here, we develop various standard Graph Neural Network (GNN) architectures, including graph convolutional network (GCN), graph attention network (GAT), and equivariant graph convolutional network (EGCN), to construct surrogate models of finite-element simulations from the Ice-sheet and Sea-level System Model. GNNs are particularly well suited for this problem as they naturally capture the representation of unstructured meshes used by finite-element models. When these GNNs are trained with the simulation results of Helheim Glacier, Greenland, for different calving stress thresholds, they successfully reproduce the evolution of ice velocity, ice thickness, and ice front migration between 2007 and 2020. GNNs show better fidelity than convolutional neural networks (CNN) particularly near the boundaries of fast ice streams, and EGCN outperforms the others by preserving the equivariance of graph structures. By using the GPU-based GNN emulators, which are 260–560 times faster than the numerical simulations, we determine the optimal range of the calving threshold that minimizes the misfit between the modeled and observed ice fronts.

Competing interests: GC is a member of the editorial board of The Cryosphere. All other authors declare that they have no conflict of interest.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Jul 2025
Calibrating calving parameterizations using graph neural network emulators: application to Helheim Glacier, East Greenland
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
The Cryosphere, 19, 2583–2599, https://doi.org/10.5194/tc-19-2583-2025,https://doi.org/10.5194/tc-19-2583-2025, 2025
Short summary
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1620', Anonymous Referee #1, 17 Jul 2024
    • AC1: 'Reply on RC1', YoungHyun Koo, 02 Sep 2024
  • RC2: 'Comment on egusphere-2024-1620', Anonymous Referee #2, 14 Aug 2024
    • AC2: 'Reply on RC2', YoungHyun Koo, 02 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1620', Anonymous Referee #1, 17 Jul 2024
    • AC1: 'Reply on RC1', YoungHyun Koo, 02 Sep 2024
  • RC2: 'Comment on egusphere-2024-1620', Anonymous Referee #2, 14 Aug 2024
    • AC2: 'Reply on RC2', YoungHyun Koo, 02 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (05 Sep 2024) by Johannes J. Fürst
AR by YoungHyun Koo on behalf of the Authors (16 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (12 Nov 2024) by Johannes J. Fürst
RR by Anonymous Referee #2 (25 Nov 2024)
RR by Anonymous Referee #3 (13 Dec 2024)
ED: Reconsider after major revisions (further review by editor and referees) (20 Dec 2024) by Johannes J. Fürst
AR by YoungHyun Koo on behalf of the Authors (06 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (07 Mar 2025) by Johannes J. Fürst
RR by Anonymous Referee #3 (07 Mar 2025)
RR by Anonymous Referee #2 (20 Mar 2025)
ED: Publish subject to minor revisions (review by editor) (27 Mar 2025) by Johannes J. Fürst
AR by YoungHyun Koo on behalf of the Authors (06 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (09 Apr 2025) by Johannes J. Fürst
AR by YoungHyun Koo on behalf of the Authors (09 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (24 Apr 2025) by Johannes J. Fürst
AR by YoungHyun Koo on behalf of the Authors (24 Apr 2025)

Post-review adjustments

AA: Author's adjustment | EA: Editor approval
AA by YoungHyun Koo on behalf of the Authors (14 Jul 2025)   Author's adjustment   Manuscript
EA: Adjustments approved (14 Jul 2025) by Johannes J. Fürst

Journal article(s) based on this preprint

18 Jul 2025
Calibrating calving parameterizations using graph neural network emulators: application to Helheim Glacier, East Greenland
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
The Cryosphere, 19, 2583–2599, https://doi.org/10.5194/tc-19-2583-2025,https://doi.org/10.5194/tc-19-2583-2025, 2025
Short summary
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar

Viewed

Total article views: 643 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
432 165 46 643 37 43
  • HTML: 432
  • PDF: 165
  • XML: 46
  • Total: 643
  • BibTeX: 37
  • EndNote: 43
Views and downloads (calculated since 12 Jul 2024)
Cumulative views and downloads (calculated since 12 Jul 2024)

Viewed (geographical distribution)

Total article views: 638 (including HTML, PDF, and XML) Thereof 638 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jul 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Share