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Abstract. Calving is responsible for the retreat, acceleration, and thinning of numerous tidewater glaciers in Greenland. An

accurate representation of this process in ice sheet numerical models is critical in order to better predict the future response of

the ice sheet to climate change. While traditional numerical models have succeeded in simulating ice dynamics and calving

under specific parameterized conditions, the computational demand of these models makes it difficult to efficiently fine-tune

these parameterizations, adding to the overall uncertainty in future sea level rise. Here, we develop various standard Graph5

Neural Network (GNN) architectures, including graph convolutional network (GCN), graph attention network (GAT), and

equivariant graph convolutional network (EGCN), to construct surrogate models of finite-element simulations from the Ice-sheet

and Sea-level System Model. GNNs are particularly well suited for this problem as they naturally capture the representation of

unstructured meshes used by finite-element models. When these GNNs are trained with the simulation results of Helheim Glacier,

Greenland, for different calving stress thresholds, they successfully reproduce the evolution of ice velocity, ice thickness, and ice10

front migration between 2007 and 2020. GNNs show better fidelity than convolutional neural networks (CNN) particularly near

the boundaries of fast ice streams, and EGCN outperforms the others by preserving the equivariance of graph structures. By

using the GPU-based GNN emulators, which are 260-560 times faster than the numerical simulations, we determine the optimal

range of the calving threshold that minimizes the misfit between the modeled and observed ice fronts.

1 Introduction15

Over the past three decades, the Greenland ice sheet has experienced an average annual loss of 170 Gt of ice, resulting in a global

mean sea level rise exceeding 15 mm (Otosaka et al., 2023). This trend of mass loss has intensified in recent years. Between

1990 and 2000, the annual mass loss hovered around 40 Gt/year, but in the 2010s, it surged to approximately 280 Gt/year

(Otosaka et al., 2023; Mouginot et al., 2019). This escalating mass loss can be attributed to two primary processes: (1) the

change in surface mass balance driven by enhanced surface melt and (2) calving and submarine melting of marine-terminating20

glaciers, commonly referred to as frontal ablation (King et al., 2020; Choi et al., 2021). In specific regions and seasons, ice

discharge may be responsible for more than 50% of the total mass loss. (Mouginot et al., 2019; King et al., 2020; Choi et al.,

2021; Aschwanden et al., 2019).
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Enhanced calving significantly impacts ice dynamics, often resulting in ice flow acceleration and subsequent thinning (Bondzio

et al., 2017; Cheng et al., 2022; Lippert et al., 2024). Given that calving is sensitive to climate conditions (Greene et al., 2024b;25

Wood et al., 2021), it is important to understand how future calving rates would impact ice sheet mass balance, and sea-level rise

(Choi et al., 2021). Numerous studies have utilized ice sheet numerical models to explore the applicability of various calving

laws to Greenland and Antarctic ice sheets, aiming to identify optimal parameterizations (Wilner et al., 2023; Choi et al., 2018).

According to Choi et al. (2018), the von Mises calving law (VM) (Morlighem et al., 2016) best replicates observed terminus

positions of nine outlet glaciers in Greenland compared to other existing laws. However, the optimal parameters for VM may30

vary significantly among different glaciers across both Greenland and Antarctica (Wilner et al., 2023; Choi et al., 2018).

Although numerical models can provide reliable solutions for ice flow when ice extent is kept constant, capturing the precise

impacts of spatiotemporally varying calving rates on terminus migration and ice flow in numerical models remains challenging.

Additionally, assimilating remote sensing observations into numerical models, required to infer certain model parameters, is both

complex to implement and computationally intensive (Choi et al., 2023). Furthermore, the integration of calving as boundary35

conditions in the numerical models introduces significant complexity since calving directly alters the ice geometry and model

domain during simulations. Consequently, identifying the optimal calving parameterizations consistent with observations is

difficult and time-consuming, thereby limiting our ability to project the future mass balance of ice sheets under various parameter

settings (Choi et al., 2018; Edwards et al., 2021; Morlighem et al., 2020).

To address the computational demands of numerical models, various approaches have emerged relying on faster machine40

learning models in lieu of ice sheet numerical models. While traditional numerical models often necessitate high-performance

computing clusters to solve partial differential equations (PDEs) on central processing units (CPUs), machine learning emulators

offer the advantage of operating on lighter computational resources, leveraging the parallel processing capabilities of graphic

processing units (GPUs). In terms of model architecture, prior research predominantly relied on a Convolutional Neural Network

(CNN) for emulating ice sheet dynamics (Jouvet et al., 2022; Jouvet and Cordonnier, 2023). However, since CNNs are tailored45

for regular Euclidean grid structures, such as images, they may not be the optimal choice for replicating the unstructured meshes

characteristic of finite-element-based numerical models. In particular, the regular grid structure of CNN may lead to a loss of

several advantages inherent in unstructured meshes, such as efficient allocation of computational resources and finer resolution

in fast ice regions.

In recent years, Graph Neural Networks (GNNs) have gained attention as a viable alternative to CNNs, particularly for50

handling irregular non-Euclidean data structures such as molecular structures, point clouds, social networks, and natural language

(Zhang et al., 2019). Unlike CNNs, GNNs are adaptable to any type of data structure organized as graphs, comprising nodes (i.e.,

data points) and edges (i.e., the connections between nodes). GNNs make predictions by utilizing pairwise message-passing

between nodes, wherein information exchange occurs, updating individual node features through interactions with connected

nodes. Inspired by the resemblance of the mesh structure in finite-element analysis to a graph structure, numerous studies have55

investigated the use of emulators of finite-element numerical simulations using GNNs (Fu et al., 2023; Shivaditya et al., 2022;

Black and Najafi, 2022; Perera et al., 2022; Salehi and Giannacopoulos, 2022; Maurizi et al., 2022; Jiang and Chen, 2023).
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In this study, we develop GNN emulators of an ice sheet numerical model to speed up the analysis of calving parameterization

effects on ice dynamics. Our focus is on Helheim Glacier, in Southeast Greenland, chosen as the target site for training and

evaluating our GNN emulators (Fig. 1a). Helheim Glacier is one of the largest outlet glacier in Greenland and it has been shown60

that its ice velocity is closely correlated to the position of its terminus (Cheng et al., 2022). Despite considerable advancements

over the past decades, the mechanisms governing Helheim Glacier’s ice front position remain elusive (Bevan et al., 2015; Miles

et al., 2016; Cheng et al., 2022). A key contributing factor to this knowledge gap is the computational intensity of numerical

models incorporating calving, impeding the fine-tuning of calving parameters to accurately reflect observations. Here, we train

GNN models using simulation data derived from a traditional numerical model and evaluate their fidelity and computational65

efficiency in modeling the ice dynamics and calving of Helheim Glacier.

The remainder of the paper is structured as follows. Section 2 provides a comprehensive review of relevant literature about

calving parameterization in ice sheet models, the use of GNNs as emulators for finite-element models, and other machine-

learning emulators employed in ice sheet modeling. In Section 3, we describe the training data collected from numerical

simulations, while Section 4 outlines the specifics of GNN architectures alongside a baseline CNN model. Section 5 presents the70

accuracy and computational efficiency of these models in replicating the dynamics of Helheim Glacier. Finally, we demonstrate

the utility of GNN emulators in optimizing calving parameterization.

2 Background

2.1 von Mises calving law

In the von Mises calving law, the calving rate, c, is assumed to be proportional to both the tensile stress and the magnitude of ice75

velocity, formulated as follows (Morlighem et al., 2016):

c = ||v|| σ̃

σmax
(1)

where σ̃ is a scalar quantity representing the effective tensile stress of the ice, σmax is a stress threshold that needs to be calibrated

on a glacier-by-glacier basis, and v is the ice flow velocity at the ice front. The moving velocity of the ice front is then determined

from the calving rate c using the following equation (Morlighem et al., 2016):80

vf = v− (c + Ṁ)n (2)

where vf is the ice front velocity, Ṁ is the melting rate on the calving front, and n is a unit normal vector pointing outward

from the ice domain. In the Ice-sheet and Sea-level System Model (ISSM), the numerical ice sheet model we use in this study,

moving boundaries of ice sheets are represented implicitly using the level set method (Osher and Sethian, 1988; Bondzio et al.,

2016; Morlighem et al., 2016). The level set method defines a scalar field φ(x, t) that is negative in the location of x that are ice85

covered at time t, positive where there is no ice, and the zero contour of φ defines the ice boundary.

In VM, σmax is the only parameter that needs to be calibrated (Morlighem et al., 2016). A lower value of σmax correlates with

easier ice calving and consequently, a larger calving rate. According to Morlighem et al. (2016), σmax is consistent with the
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Figure 1. (a) Location of Helheim Glacier, Greenland; (b) ice velocity, (c) bed elevation, and (d) ice thickness near the calving front of

Helheim glacier in 2007. The background image is the MODIS true color image from June 20, 2023.
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range of ice tensile strength, which is typically around 1 MPa, but may be as low as 0.7 MPa or exceed 3 MPa. However, since

σmax can vary spatially, and even temporally, among different Greenlandic glaciers (Choi et al., 2018; Downs et al., 2023), finely90

calibrating σmax is the key for accurately modeling ice dynamics.

2.2 Graph neural networks for finite-element analysis

GNNs have been broadly used to emulate finite-element numerical models due to the similarities between a computational mesh

and graphs. Perera et al. (2022) developed a GNN framework to simulate fracture and stress evolution in brittle materials, training

their model with data generated from a finite-element method fracture solver. Similarly, Shivaditya et al. (2022) proposed a95

GNN surrogate model for finite-element simulations of metal forging processes, demonstrating superior performance compared

to other machine learning models and achieving a tenfold reduction in processing time. Salehi and Giannacopoulos (2022) also

developed PhysGNN, a GNN framework tailored for simulating soft tissue deformation, and Maurizi et al. (2022) utilized GNNs

to predict stress, strain, and deformation across various material systems, including fiber and stratified composites, and lattice

metamaterials. Fu et al. (2023) proposed a boundary-oriented graph embedding (BOGE) approach within the GNN framework100

for solving finite-element cantilever beam problems, incorporating both boundary elements and local neighbor elements. Jiang

and Chen (2023) introduced a novel graph attribute representation for triangular meshes in finite-element von Mises stress

problems, effectively capturing geometry and boundary conditions to mitigate over-smoothing issues associated with deep

GNNs. Black and Najafi (2022) introduced a multi-fidelity GNN for the cantilever beam problem, leveraging low-fidelity

projections to inform high-fidelity modeling across arbitrary subdomains of subgraphs. However, despite the prevalence of105

finite-element analysis in ice sheet modeling (Larour et al., 2012; dos Santos et al., 2021; Gagliardini et al., 2013), to the best of

our knowledge, GNNs have yet to be adopted for simulating ice flow and calving modeling.

2.3 Machine learning emulator for ice sheet modeling

Machine learning techniques, predominantly CNNs, have been extensively employed as statistical emulators for numerical ice

sheet models (Jouvet et al., 2022; Jouvet and Cordonnier, 2023; Jouvet, 2023; Verjans and Robel, 2024). For instance, the CNN110

of the Instructed Glacier Model (IGM) (Jouvet et al., 2022) reproduced the ice dynamics from the Parallel Ice Sheet Model

(Winkelmann et al., 2011, PISM) and CfsFlow models (Jouvet et al., 2008). Jouvet (2023) extended this CNN emulator to

address inversion problems, inferring optimal ice thickness distribution, ice flow velocity, and ice surface elevation to match

both a Stokes model and observational data. Another CNN emulator introduced by Jouvet and Cordonnier (2023) employed a

physics-informed loss function to minimize the energy associated with ice-flow equations during training. Verjans and Robel115

(2024) developed a CNN-based emulator to model subglacial hydrology in several Greenland glaciers. Despite the computational

advantages of CNN-based emulators over numerical models, CNN cannot fully represent finite-element ice sheet modeling

because it relies on regular grids (Zhang et al., 2019). Instead of CNN, He et al. (2023) employed a neural operator architecture

to replace finite-element modeling of ice velocity based on Shelfy Stream Approximation (SSA). By using a hybrid approach

integrating neural operators with finite-element methods, they retain a classical finite-element discretization for the evolution120

of the ice thickness. While prior studies have primarily focused on emulators for general ice flow problems, no studies have
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focused on calving dynamics using machine learning emulators. Given the GNN’s capacity to account for dynamic interactions

between nodes and edges (Satorras et al., 2022), it emerges as a promising tool for predicting the dynamic behavior of ice,

including ice front migration.

3 Training Data and Observations125

3.1 Ice Sheet numerical simulation

To generate training datasets for the GNN emulators, we conduct transient simulations of ice dynamics and calving of Helheim

Glacier between 2007 and 2020, using the Ice-sheet and Sea-level System Model (ISSM Larour et al., 2012). The Shelfy-Stream

Approximation (SSA MacAyeal, 1989) is used for describing ice flow. The SSA, which assumes depth-independent horizontal

velocity and negligible vertical shear stresses, is appropriate for fast-flowing glaciers controlled by basal sliding such as Helheim130

Glacier (Cheng et al., 2022; Choi et al., 2018).

The model setup is identical to the one described in Cheng et al. (2022). A two-dimensional unstructured mesh is constructed

with a spatial resolution ranging from 100 m in the fast-flowing ice front to 1,500 m in the inland domain, ultimately comprising

46,434 elements and 23,466 vertices (nodes). The transient simulations run forward in time with a time step of 1.825 days (0.005

years), and we output the state of the model every 10 time steps (∼18 days). Consequently, each single transient simulation135

generates a total of 261 results between 2007 and 2020. Basal friction is calibrated using the surface velocities from satellite

interferometry (Mouginot et al., 2017, 2019) (Fig. 1b); bed topography and the initial ice thickness are from BedMachine

Greenland v6 (Morlighem et al., 2017) (Fig. 1c and 1d); surface mass balance (SMB) is from the Regional Atmosphere Model

(Tedesco and Fettweis, 2020); the ocean thermal forcing is from Wood et al. (2021). The melting rate at the calving front (i.e.,

Ṁ in Eq. 2) is parameterized based on Rignot et al. (2016). To examine the sensitivity of ice dynamics to σmax of the VM140

calving law, we run transient solutions for 9 different σmax values (i.e., 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, and 1.10

MPa) based on the values proposed by Choi et al. (2018).

The ISSM simulations provide the solutions of ice velocity, ice thickness, and a mask of ice-covered region every 10 time

steps. We convert the triangular mesh from ISSM into a data structure that aligns with the input and output requirements of deep

learning architectures. Specifically, for GNN architectures, we convert the meshes into graph nodes and edges by extracting145

adjacent matrices that represent the connectivity between nodes. In a triangular mesh, each element consists of three nodes that

are interconnected by edges (Fig. 2). Using the nodes and elements of the mesh ensures that the resolution of this graph matches

exactly with the finite-element mesh used in ISSM simulations. However, for the CNN architecture that requires regular grid

data structures, we interpolate the ISSM mesh into a 200 m×200 m grid using a bilinear interpolation.

3.2 Observations150

To determine the best σmax that aligns with real observations, we collect remote-sensing derived terminus positions and ice

velocities for the same periods as the numerical simulations (2007-2020). First, we use surface ice velocities with a spatial
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resolution of 150 m (Mouginot et al., 2017, 2019), which have a precision better than 20 m/year (Mouginot et al., 2017). Second,

we use a time series of calving front positions of Helheim Glacier from Greene et al. (2024a). During the targeted time frame

from 2007 to 2020, we use monthly averaged ice front positions, yielding a total of 156 distinct ice front positions for analysis.155

4 Method

Ice sheet modeling can be regarded as a node-regression problem within graph structures, where the output features of individual

nodes are derived from the input features of nodes. The unstructured meshes of ISSM can be represented as graph structures,

with node connectivity expressed via adjacency matrices. Based on the graph structures of the ISSM meshes, we develop three

GNN architectures: graph convolutional network (GCN), graph attention network (GAT), and equivariant graph convolutional160

network (EGCN). Typical GNN architectures update graph nodes iteratively through message-passing processes between

neighboring nodes, and the way to achieve this message-passing determines the specific type of GNN architecture. For the

undirected graph G = (V,E) with N nodes vi ∈ V , edges (vi,vj) ∈ E , and an adjacency matrix A ∈ RN×N , lth GNN layer

receives a set of node features h(l) = {h(l)
1 ,h

(l)
2 , ...,h

(l)
N },h

(l)
i ∈ RFl , as the input and produces a new set of node features,

h(l+1) = {h(l+1)
1 ,h

(l+1)
2 , ...,h

(l+1)
N },h(l+1)

i ∈ RFl+1 , for the next l + 1th layer. Fl and Fl+1 is the number of features in each165

node at lth layer and l + 1 layer, respectively. The GCN, GAT, and EGCN operate on graph structures but use different message-

passing approaches in updating h(l+1) from h(l). By comparing three representative GNN architectures, we evaluate what

approach is more effective in replicating ice sheet dynamics and calving from the ISSM simulations.

4.1 Graph Convolutional Network

First, we employ a GCN proposed by Kipf and Welling (2017). We design a GCN with one input layer, five graph convolutional170

hidden layers, and one output layer (Fig. 2). The number of hidden layers is determined after conducting trial and error

experiments with several options: we tested 1, 2, 5, and 10 hidden layers, and 5 hidden layers showed the best accuracy. The

graph convolutional hidden layers are inspired by the localized first-order approximation of spectral graph convolutions on

graph-structured data (Kipf and Welling, 2017). For each graph convolutional layer, the number of features is set to 128. Similar

to the hidden layers, the number of hidden features was determined from trial and error with 4 options: 32, 64, 128, and 256.175

The weights of graph convolutional layers are updated via the layer-wise propagation rule as follows:

h
(l+1)
i = σ


 ∑

j∈N (i)

1
cij

W(l)h
(l)
j


 (3)

where N (i) is the set of neighbors of node i, cij is an appropriately chosen normalization constant for the edge (vi,vj) defined

as the product of the square root of node degrees (i.e., cij =
√
|N (j|)

√
|N (i)|), and W(l) ∈ RFl+1×Fl . W(l) is a layer-specific

trainable weight matrix (W(l) ∈ RFl+1×Fl), and σ(·) is an activation function; we use the Leaky ReLU activation function of180

0.01 negative slope in this study.
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Figure 2. Schematic illustration of GCN architectures. All graph convolutional layers are replaced with graph attention layers for GAT,

equivariant graph convolutional layers for EGCN, and 3×3 convolutional layers for FCN.

4.2 Graph Attention Network

Since the original GCN filters merely depend on graph structures and node connectivity (Eq. 3), a model trained with a certain

graph structure can have limitations in general applicability to different graph structures. The GAT is proposed to address such

shortcomings by adding masked self-attention layers (Veličković et al., 2018). This architecture assigns different weights to185

different nodes in a neighborhood by stacking self-attention layers (Fig. 3a), which can allow better generalizability for different

ice conditions or topographies. The propagation process in graph attention layers can be expressed by the following equation

(Veličković et al., 2018):

h
(l+1)
i = σ


 ∑

j∈N (i)

α
(l)
ij W(l)h

(l)
j


 (4)

where α(l) is the attention score between node i and node j defined as follows:190

α
(l)
ij = softmaxj

(
e
(l)
ij

)
=

exp(e(l)
ij )

∑
k∈N (i) exp(e(l)

ik )

e
(l)
ij = a

(
W(l)h

(l)
i ,W(l)h

(l)
j

)
(5)

8

https://doi.org/10.5194/egusphere-2024-1620
Preprint. Discussion started: 12 July 2024
c© Author(s) 2024. CC BY 4.0 License.



where a : RFl+1 ×RFl+1 → R is a self-attention mechanism to compute attention coefficient e
(l)
ij . This attention mechanism a is

a single-layer feedforward neural network parameterized by a weight vector a ∈ R2Fl+1 , normalized by LeakyReLU function

afterward. The graph structure is applied to this attention mechanism by computing e
(l)
ij for only nodes j ∈N (i) where N (i) is

set of neighbors of node i. Thus, the attention score α(l) can be expressed as follows:195

α
(l)
ij =

exp
(

LeakyReLU(aT [W(l)h
(l)
i ||W(l)h

(l)
j ])

)

∑
k∈N (i) exp

(
LeakyReLU(aT [W(l)h

(l)
i ||W(l)h

(l)
k ])

) (6)

where ·T denotes transpose operator and || is the concatenation operation. We execute three independent attention mechanisms

of Equation 4 and average them for the final graph attention layer (Veličković et al., 2018). Similar to the GCN, the GAT consists

of one input layer, five graph attention hidden layers with 128 features, and one output layer (Fig. 2).

4.3 Equivariant Graph Convolutional Network200

Another graph neural network we develop is EGCN, which is designed to conserve equivariance to rotations, translations,

reflections, and permutations in a graph structure (Satorras et al., 2022) (Fig. 3b). Since our emulator is intended to predict ice

front migration, we anticipate that the preservation of equivariance to rotations and translations on spatial coordinates via the

EGCN structure guarantees sufficient generalizability to various graph structures of dynamics systems. As a modified version

of the graph convolutional network (Gilmer et al., 2017), an equivariant graph convolutional layer can be expressed by the205

following equations:

mij = ϕe(h
(l)
i ,h

(l)
j , ||x(l)

i −x
(l)
j ||2,aij) (7)

x
(l+1)
i = x

(l)
i + C

∑

j ̸=i

(x(l)
i −x

(l)
j )ϕx(mij) (8)

210

mi = x
(l)
i + C

∑

j ̸=i

mij (9)

h
(l+1)
i = ϕh(h(l)

i ,mi) (10)

where aij is the edge attributes, xi and xj are the 2D coordinate embeddings for node i and j, respectively, and C is a constant

for normalization computed as 1/|N (i)|. For the edge attributes, we use five attributes that can be extracted from the connecting215

nodes: distance, surface slope, base slope, and gradient of the x and y components of the ice velocity. ϕe, ϕx, and ϕh are the

edge, position, and node operations, respectively, which are approximated by single-layer MLPs. The translation and rotation
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Figure 3. (a) Illustration of attention mechanism of GAT (Veličković et al., 2018). The node feature at lth layer h
(l)
1 is updated to h

(l+1)
1 from

the three attention scores from each neighboring node. The average of the 3 attention mechanisms become h
(l+1)
1 ; (b) Concept of equivariance

to rotation and transition of EGCN (Satorras et al., 2022).
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equivariance can be preserved through Equation 8 (Satorras et al., 2022). Herein, we regard the x- and y-components of the ice

velocity as the displacement causing coordinate change of the nodes of the graph, even though the graph structure itself remains

unchanged over time. Thus, in the EGCN, among the four output variables, the x- and y-components of the ice velocity are220

represented as the coordinate embeddings x
(l)
i in Eq. 8 and 9, and ice thickness and ice mask are represented by h

(l)
i . Thus,

the ice thickness and ice mask features are equivariant to the displacement caused by ice flow. Additionally, this equivariant

operation is flexible since the embedding message mij can carry information from the entire graph and not only from the

specific neighboring nodes (Satorras et al., 2022). Similar to the GCN and GAT, the EGCN also consists of one input layer, five

equivariant graph convolutional layers with 128 features, and one output layer (Fig. 2).225

4.4 Convolutional Neural Network

As a baseline, or “control” model to compare our GNN emulators against, we train and test a fully convolutional network

(FCN), which has a similar architecture as the one described in Jouvet et al. (2022). Our FCN architecture consists of 5 hidden

convolutional layers, and each convolution has a 3×3 kernel size and 128 features. The leaky ReLU activation function of

0.01 negative slope is applied after each convolutional layer. Since the FCN takes regular grids as the input and output, the230

interpolated 200 m grid datasets are used as the input and output of the FCN, but the output of the FCN is interpolated onto the

original triangular mesh for comparison.

4.5 Model training

From the ice sheet simulation results, we collect 2,349 graph structures (261 sets of results per transient simulations × 9 σmax

values). Our GNN takes 8 features of those graph nodes as inputs, including time t, σmax, bed elevation, surface mass balance235

(SMB), initial ice thickness, x and y components of the ice velocity at time t− 1, and ice mask at time t− 1. Then, after

forwarding processes, the output layer predicts 4 features of those graph nodes at time t: the two components of the ice velocity,

ice thickness, and ice mask (Fig. 2). All input and output features are normalized to the range [-1, 1] for stable learning using the

nominal maximum and minimum values of these variables.

All 2,349 graph structures are divided into training, validation, and test datasets based on the σmax values to assess if our240

emulators can be generalized for out-of-sample σmax values. The data with σmax equal to 0.70, 0.80, 0.85, 0.90, 1.00, 1.05, and

1.10 MPa are used for training and validation: we randomly split them into 70% and 30% for training and testing, respectively.

The remaining data, with σmax equal to 0.75 and 0.95 MPa, are used as test datasets. Consequently, the number of training,

validation, and test graph datasets is 1279, 548, and 522, respectively. The model is optimized by Adam stochastic gradient

descent algorithm with the mean square error (MSE) loss function, over 500 epochs, and a learning rate of 0.001.245

4.6 Model evaluation

We evaluate the ability of our emulators to reproduce ice velocity, ice thickness, and calving front migration by comparing them

to ISSM simulation results. For this evaluation, we calculate three metrics: (i) root mean square error (RMSE), (ii) correlation
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coefficient (R), and (iii) binary accuracy score (BiAcc); RMSE and R are used to evaluate ice velocity and ice thickness

predictions, and BiAcc is used to evaluate the calving front delineation. These metrics are calculated using the following250

equations:

RMSE(ŷ,y) =

√√√√ 1
N

N∑

i=1

(ŷi− yi)2 (11)

R(ŷ,y) =

i∑
(ŷi− ¯̂y)(yi− ȳ)

√
i∑

(ŷi− ¯̂y)2
i∑

(yi− ȳ)2

(12)

255

BiAcc(ŷ,y) =
1
N

N∑

i=1

I(ŷi = yi) (13)

where ŷ denotes predicted values, y denotes true values, N is the number of data points, and I(ŷi = yi) denotes the indication

function that returns 1 if ŷi = yi and returns 0 if ŷi ̸= yi. RMSE represents the difference between the prediction and reference;

lower RMSE corresponds to better fidelity. R represents the spatial correlation between the prediction and reference, ranging

from −1 to 1; R close to 1 means that the prediction agrees with the “ground truth” more. In calculating BiAcc, we convert the260

ice mask into binary values, representing ice nodes as 1 and non-ice nodes as 0. Therefore, BiAcc is a metric indicating the

proportion of accurately predicted nodes relative to the total number of nodes.

5 Results

In this study, we apply the GNN and FCN emulators to predict changes in ice sheet dynamics and ice front position of Helheim

Glacier. We evaluate the model accuracy and computational efficiency of these emulators and examine the effect of the tunable265

parameter σmax on the ability of the model to match observations.

5.1 Model Fidelity

Our GNN models are trained with seven σmax values of 0.70, 0.80, 0.85, 0.90, 1.00, 1.05, and 1.10 MPa, and these trained

models are tested with two out-of-sample σmax values of 0.75 and 0.95 MPa. Table 1 displays the accuracy in ice velocity, ice

thickness, and calving front position for deep learning emulators at the test σmax values. Overall, all deep learning emulators270

exhibit remarkable performance in predicting ice velocity and thickness, with R-values greater than 0.997. Moreover, as depicted

in Fig. 4 and 5, all emulators successfully reproduce the retreat of ice front at lower σmax and the advance of ice front at higher

σmax. However, the deep learning emulators show lower accuracy at lower σmax (0.75 MPa), which corresponds to a higher

chance of calving and more dynamic ice flow conditions. The sudden changes in ice dynamics and calving under a lower σmax
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values could make it challenging for the GNN emulators to replicate the exact results of the numerical model. On the other hand,275

since the ice front remains relatively stable at a higher σmax value, it could be easier to predict this stable state of the glacier at

0.95 MPa of σmax.

Table 1. Accuracy of ice velocity, ice thickness, and ice front position retrieved from the GCN, GAT, EGCN, and FCN surrogate models on

two test σmax values.

Model
σmax

(MPa)
Ice velocity Ice thickness Calving front

RMSE (m/year) R RMSE (m) R Acc (%)

FCN

0.75 123.36 0.997 41.88 0.996 98.6

0.95 118.60 0.997 40.55 0.996 98.6

Average 120.98 0.997 41.22 0.996 98.6

GCN

0.75 88.35 0.998 37.57 0.997 98.4

0.95 77.10 0.999 35.81 0.997 99.2

Average 82.73 0.998 36.69 0.997 98.8

GAT

0.75 77.09 0.999 37.90 0.997 99.1

0.95 71.06 0.999 34.94 0.997 99.1

Average 74.08 0.999 36.42 0.997 99.1

EGCN

0.75 42.43 0.999 30.82 0.998 99.5

0.95 39.24 0.999 27.60 0.998 99.4

Average 40.84 0.999 29.21 0.998 99.4

In terms of ice velocity, all three GNN models demonstrate better accuracy than the FCN for both σmax values. As shown in

the ice velocity maps in Fig. 4, the FCN exhibits higher errors, particularly along the boundary between fast and slow ice in the

main ice stream. These large errors around the edge of the ice stream can be attributed to the fixed resolution and connectivity of280

the FCN. While ISSM uses a finer mesh resolution for fast ice regions to capture detailed ice dynamics, the FCN uses a uniform

200 m resolution grid across the entire domain. Hence, the FCN struggles to accurately describe the detailed ice dynamics

in regions of sharp gradients, such as shear margins. On the other hand, GNNs can fully leverage the adaptive meshes of the

ISSM by using the original mesh and connecting information between nodes. Among the three GNN emulators, the EGCN

shows the best accuracy, followed by GAT and GCN. In general, EGCN reduces the RMSE of ice velocity by 30-40 m/year285

compared to the other GNN architectures. As mentioned in section 4, the GCN, GAT, and EGCN have distinct characteristics in

message-passing approaches: the GCN simply uses the adjacency status between neighboring nodes to determine the weights

during the propagation process (Eq. 3); the GAT uses additional self-attention mechanisms to evaluate the relative importance of

neighboring nodes (Eq. 5); the EGCN uses the message passing from all nodes to preserve the equivariance of the entire graph
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(Eq. 7 and 8). We conjecture that the equivariance architecture of the EGCN contributes significantly to the improvement of290

model fidelity.

In terms of ice thickness, the EGCN also shows the best accuracy, with an average RMSE of 29.21 m (Table 1) and notably

lower errors across the entire model domain (Fig. 5). The GCN and GAT have similar RMSEs of around 36 m for ice thickness

prediction, while the FCN still has the largest RMSE of > 40 m. Similar to the ice velocity results, the FCN shows larger errors

near the boundary of the ice stream due to its limited resolution and node connectivity (Fig. 5).295

The best fidelity from the EGCN and the worst fidelity from the FCN are also observed for the calving front position prediction

(Table 1). The BiAcc of the FCN averages around ∼98.6%, whereas that of the EGCN reaches 99.4%. This supports the notion

that the equivariance concept of the EGCN is beneficial in predicting the dynamic movement of the ice front. The location of the

ice front at the end of the transient simulation for different σmax values, retrieved from ISSM and deep learning emulators, are

shown in Fig. 6. All emulators predict the retreat of the ice front at lower σmax values and the advance of the ice front at higher300

σmax values, which agrees with the results of ISSM. It is noteworthy that the calving front prediction of the EGCN agrees best

with the ISSM.

5.2 Computational time

The most significant advantage of GNN emulators is their ability to reduce computation time dramatically by leveraging GPUs.

We record and compare the time required to generate the final transient simulations for seven different σmax values using ISSM305

and our GNN emulators (Table 2). The computation time of ISSM represents the total elapsed time spent on a single node of the

Texas Advanced Computing Center (TACC) Frontera supercomputing cluster, which is equipped with 56 cores of Intel 8280

Cascade Lake CPUs (192 GB memory). The computation times of GNN emulators represent the total elapsed time on a CPU

(Intel(R) Core(TM) i7-11700F; 32 GB memory) and GPU (NVIDIA GeForce RTX 3070; 24GB memory) of the same desktop

(Lenovo Legion T5 26IOB6). We observe a dramatic speed-up with GPU-based deep learning emulators, achieving computation310

times that are 250-560 times faster than ISSM simulations. Specifically, the GCN shows the highest speed-up, around 560 times

faster than ISSM, and the FCN shows the least speed-up, being around 250 times faster. It is also noteworthy that using GPUs

reduces the computation time of deep learning emulators by 16-37 times compared to using CPUs.

This experiment is also promising because, while ISSM computation is performed on a supercomputer, GNNs can be run on a

personal desktop. By using GPU-based GNN emulators, the computationally intensive solutions of ice dynamics and calving315

can be quickly reproduced on personal desktops without the need for high-performance computing systems. We expect that

these types of emulators will facilitate the effective parameterization of different ice conditions, ice properties, and external

climate forcings.

However, although GNNs can successfully replicate the finite-element structure of ISSM simulations and reduce the

computational time by leveraging GPUs, it is important to consider the upstream costs for training deep learning emulators to320

assess their whole-process efficiencies. Table 3 shows the number of learnable parameters and model training time for FCN,

GCN, GAT, and EGCN. This training time is recorded from the 500-epoch training of each model on a multiple-GPU system

equipped with 8 NVIDIA RTX A5000 GPUs. GCN takes the least training time, followed by GAT, EGCN, and FCN. FCN
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Figure 4. Maps of ISSM-simulated ice velocity, FCN-emulated ice velocity and difference with ISSM, GCN-emulated ice velocity and

difference with ISSM, GAT-emulated ice velocity and difference with ISSM, and EGCN-emulated ice velocity and difference with ISSM

(from top to bottom) for 0.75 MPa and 0.95 MPa of calving thresholds σmax.
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Figure 5. ISSM-simulated ice thickness, FCN-emulated ice thickness and difference with ISSM, GCN-emulated ice thickness and difference

with ISSM, GAT-emulated ice thickness and difference with ISSM, and EGCN-emulated ice thickness and difference with ISSM (from top to

bottom) for 0.75 MPa and 0.95 MPa of calving thresholds σmax.
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Figure 6. Calving front in 2020 for different σmax predicted by ISSM and deep learning emulators.

takes around 11.8 times, 5.3 times, and 4.5 times more training time than GCN, GAT, and EGCN, respectively. It is noted

that FCN shows inferior accuracy compared to the others despite its longer training time. Therefore, considering upstream325

computational time, post-training computation time, and fidelity of the model, GNN architectures appear to be more efficient

tools than traditional CNNs for emulating finite-element ice sheet dynamics. Moreover, given that improving resolution in a

regular grid of CNN requires exponentially increasing computations, the irregular graph structures would be more practical if

high-resolution information is required.

Table 2. Computation time (seconds) for generating the 13-year transient results from ISSM and GNN emulators

METHOD MODEL CPU GPU

NUMERICAL ISSM 6681.25 -

EMULATOR

GCN 200.58 11.89

GAT 772.66 20.88

EGCN 759.37 25.42

FCN 851.71 27.01

Table 3. Upstream computational time for training deep learning models

Model Number of learnable parameters Training time (seconds)

FCN 604,292 4151.49

GCN 67,843 349.45

GAT 205,656 772.31

EGCN 269,826 906.71
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5.3 Comparison with real observations330

We use these GNN emulators to determine the appropriate range of σmax values to accurately capture the migration of Helheim’s

calving front. The satellite-derived ice velocity and ice front observations at each time step are used as input for the GNN models

to predict the ice front at the next time step. Then, we identify the optimal σmax value for each time step that maximizes the

BiAcc of ice front location between prediction and observation (Eq. 13). Given that previous studies (Morlighem et al., 2016;

Wilner et al., 2023; Choi et al., 2018) suggest that σmax should fall between 0.7 to 1.1 MPa, we vary σmax incrementally by 0.01335

MPa within this range and determine the σmax value with the highest BiAcc. Fig. 7a-c shows the range of σmax with > 95 %

of accuracy, derived from the three GNN emulators spanning 2007 to 2020. Although the GCN (Fig. 7a) exhibits a different

trend in the first 2 years (2007-2008) compared to the GAT (Fig. 7b) and EGCN (Fig. 7c), the optimal σmax generally increases

after 2009 for all emulators. These results indicate that the early years have a relatively wide range of > 95 % accuracy σmax

compared to the late few years. While the best σmax appears to be around 0.8±0.15 MPa in 2009, this range shifts to around340

1.0±0.07 MPa after 2016. The GNN emulators enable us to determine the appropriate σmax range almost 260-600 times faster

than traditional numerical models. While this parameter search process is laborious and time-consuming with numerical models,

it is relatively quick and simple with GNNs; we determine this effective range by simply replacing the input variables of the

deep learning models with real observations.

In order to understand the scientific implication of this σmax variation, we also examine the calving front and ice velocity from345

satellite observations for two flow lines (Fig. 1b). In the early years before 2014, the ice front remains relatively stable (with

< 2 km of retreat/advance) without significant advances or retreats (Fig. 7d and e). However, after 2014, the ice front moves

more dynamically: ice front retreat reaches up to 4 km in the summers of 2017 and 2019 (Fig. 7d and e). Considering that σmax

increases from 2009-2014 and remains consistently at 1.0±0.7 MPa after 2014, we suggest that additional environmental factors

(e.g., mélange or ocean thermal forcing) could have contributed to changes in calving rates after 2014. Although this study only350

investigates the sensitivity of modeled ice front position to the calving threshold σmax based on VM, GNN emulators can be

further utilized to investigate the impact of any other model input, such as external forcings.

6 Discussion

The results of this study demonstrate the superiority of GNN architectures, especially EGCN, over traditional CNN architectures

in emulating numerical ice sheet models operating on unstructured meshes. Firstly, in terms of model fidelity, traditional CNN355

architectures require the interpolation of the unstructured meshes into rectangular meshes, resulting in a loss of accuracy,

especially in the regions with high resolution on the original unstructured mesh. Using GNN directly on raw unstructured meshes

keeps high resolution in fast ice regions that significantly affect the dynamics of the entire ice sheet domain. In particular, EGCN

shows the best fidelity in predicting ice thickness due to its equivariance concept throughout the graph structures. Secondly,

GNN architectures can preserve the computational efficiency inherent to unstructured meshes. ISSM allocates computational360

resources by assigning finer resolution to fast flow regions and coarser resolution to slow moving regions. However, using

rectangular meshes and CNN disrupts this efficient allocation, eventually increasing the computation time. Indeed, as shown in
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Figure 7. Optimal σmax compared with the real observations .
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section 5.2, FCN requires 4-12 times longer training time compared to GNN emulators. If we use a rectangular grid with a finer

resolution than 1 km, CNN will take a longer time due to the inefficient allocation of too-fine resolutions for where ice flow is

slow.365

Moreover, GNN emulators have significant potential for further improvement, particularly through integration with various

architectures, including recurrent neural networks (RNNs) and attention mechanisms (Wu et al., 2021). For example, embedding

recurrent units into the GNN architecture would make it possible to find the sequential relationships between ice sheet dynamics

and calving parameters. This recurrent GNN architecture will be able to predict how the historical context of calving parameters

affects ice dynamics and ice front migration. As the pioneering study to evaluate the potential of GNN for connecting calving370

parameterizations and ice sheet dynamics, this research provides insights into how GNN can be effectively utilized in glaciology.

Nevertheless, it is also worth noting several limitations of our approach. Firstly, despite the computational efficiency of GNN

emulators, they should be trained using numerical simulations. Since the model performance is highly dependent on the quality

of training datasets, simulation data should be collected carefully with appropriate parameterizations. Additionally, the collection

of training datasets from various climatological scenarios is essential for better generalizability and reliability of emulators;375

however, this process can be exceptionally time-consuming. Secondly, although we use numerical simulation data based on

the VM calving law for training, it is important to recognize that calving mechanisms are not yet fully understood and may be

more complex than those represented by the VM law. While the VM method has been validated for many glaciers in Greenland

and Antarctica (Choi et al., 2018; Wilner et al., 2023), detailed calving mechanisms remain elusive. Thus, although our GNN

emulators provide valuable insights into calving mechanisms based on VM calving law, they cannot provide implicit solutions380

for all calving processes.

7 Conclusions

This study develops three standard graph neural networks: graph convolutional network, graph attention network, and equivariant

graph convolutional network, as surrogate models to reproduce finite-element ice dynamics and calving retrieved from the ISSM.

After training these GNNs with the 13-year transient simulation results from Helheim Glacier, they demonstrate significant385

spatiotemporal agreement with ISSM simulations in predicting ice velocity, ice thickness, and ice front location. Additionally,

the GNN emulators successfully reproduce the retreat of the ice front for a lower calving stress threshold σmax, as well

as the stable condition of the ice front for a higher σmax. Among the three GNN architectures, the EGCN shows the best

robustness by preserving the equivariance of graph structures regardless of displacement caused by ice movement. Given that

our GNN emulators can reduce computational time by 260-560 times, even on a personal desktop, they are a promising tool for390

investigating the impact of parameterizations on future ice sheet behavior. By simply applying satellite-derived observations to

these computationally efficient GNNs, we find that the optimal σmax of the von Mises calving law should slightly increase from

2007 to 2020 for Helheim Glacier. This study represents the first attempt to use GNNs for modeling ice sheet dynamics and

calving, ultimately contributing to improving the prediction accuracy of ice sheet mass loss and resulting sea level rise under

rapidly changing climate conditions.395
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