Preprints
https://doi.org/10.5194/egusphere-2024-1119
https://doi.org/10.5194/egusphere-2024-1119
25 Jul 2024
 | 25 Jul 2024

Implementation of implicit filter for spatial spectra extraction

Kacper Nowak, Sergey Danilov, Vasco Müller, and Caili Liu

Abstract. Scale analysis based on coarse-graining has been proposed recently as an alternative to Fourier analysis. It is now broadly used to analyze energy spectra and energy transfers in eddy-resolving ocean simulations. However, for data from unstructured-mesh models it requires interpolation to a regular grid. We present a high-performance Python implementation of an alternative coarse-graining method which relies on implicit filters using discrete Laplacians. This method can work on arbitrary (structured or unstructured) meshes and is applicable to the direct output of unstructured-mesh ocean circulation atmosphere models. The computation is split into two phases: preparation and solving. The first one is specific only to the mesh. This allows for auxiliary arrays that are then computed to be reused, significantly reducing the computation time. The second part consists of sparse matrix algebra and solving linear system. Our implementation is accelerated by GPUs to achieve unmatched performance and scalability. This results in processing data based on meshes with more than 10M surface vertices in a matter of seconds. As an illustration, the method is applied to compute spatial spectra of ocean currents from high-resolution FESOM2 simulations.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
A new method called coarse-graining scale analysis is gaining traction as an alternative to...
Share