Preprints
https://doi.org/10.5194/egusphere-2024-1094
https://doi.org/10.5194/egusphere-2024-1094
22 Apr 2024
 | 22 Apr 2024

SO2 emissions and lifetimes derived from TROPOMI observations over India using a flux-divergence method

Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt

Abstract. The rapid development of the economy and the implementation of environmental policies adapted in India has led to fast changes of regional SO2 emissions. We present a monthly SO2 emission inventory for India covering December 2018 to November 2023 based on the TROPOMI Level-2 COBRA SO2 dataset, by using an improved flux-divergence method and estimated local SO2 lifetime which includes both its chemical loss and dry deposition. We update the methodology to use the daily CAMS model output estimates of the hydroxyl-radical distribution as well as the measured dry deposition velocity to account for the variability in the tropospheric SO2 lifetime. The results show the application of the local SO2 lifetime improves the accuracy of SO2 emissions estimation when compared to calculations using a constant lifetime. Our improved flux-divergence method reduced the spreading of the point source emissions compared to the standard flux-divergence method. The averaged SO2 emissions covering the recent 5 years are about 5.2 Tg year-1, which is lower than the bottom-up emissions of 11.0 Tg year-1 from CAMS-GLOB-ANT v5.3. The total emissions from the 92 largest point source emissions are estimated to be 2.9 Tg year-1, lower than the estimation of 5.2 Tg year-1 from the global SO2 catalog MSAQSO2LV4. We argue that for other important regions that have high SO2 emissions, the variability in the SO2 lifetime becomes more important to account for estimating top-down SO2 emissions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Feb 2025
SO2 emissions derived from TROPOMI observations over India using a flux-divergence method with variable lifetimes
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Atmos. Chem. Phys., 25, 1851–1868, https://doi.org/10.5194/acp-25-1851-2025,https://doi.org/10.5194/acp-25-1851-2025, 2025
Short summary
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Yutao Chen on behalf of the Authors (29 Jul 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (12 Aug 2024) by Jianzhong Ma
RR by Anonymous Referee #3 (02 Oct 2024)
ED: Reconsider after major revisions (05 Oct 2024) by Jianzhong Ma
AR by Yutao Chen on behalf of the Authors (15 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (17 Nov 2024) by Jianzhong Ma
RR by Anonymous Referee #3 (09 Dec 2024)
ED: Publish as is (10 Dec 2024) by Jianzhong Ma
AR by Yutao Chen on behalf of the Authors (18 Dec 2024)  Manuscript 

Journal article(s) based on this preprint

11 Feb 2025
SO2 emissions derived from TROPOMI observations over India using a flux-divergence method with variable lifetimes
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Atmos. Chem. Phys., 25, 1851–1868, https://doi.org/10.5194/acp-25-1851-2025,https://doi.org/10.5194/acp-25-1851-2025, 2025
Short summary
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt

Viewed

Total article views: 779 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
542 204 33 779 77 33 26
  • HTML: 542
  • PDF: 204
  • XML: 33
  • Total: 779
  • Supplement: 77
  • BibTeX: 33
  • EndNote: 26
Views and downloads (calculated since 22 Apr 2024)
Cumulative views and downloads (calculated since 22 Apr 2024)

Viewed (geographical distribution)

Total article views: 807 (including HTML, PDF, and XML) Thereof 807 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 11 Feb 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
There is a lack of local SO2 top-down emission inventories in India. With the improvement in the divergence method and the derivation of SO2 local lifetime, gridded SO2 emissions over a large area can be estimated efficiently. This method can be applied to any region in the world to derive SO2 emissions. Especially for regions with high latitudes, our methodology has the potential to significantly improve the top-down derivation of SO2 emission estimates.
Share