
   

 

   

 

1 

SO2 emissions and lifetimes derived from TROPOMI 

observations over India using a flux-divergence method 
 

Yutao Chen1,2, Ronald J. van der A1, Jieying Ding1, Henk Eskes1, Jason E. Williams1, Nicolas 

Theys3, Athanasios Tsikerdekis1, Pieternel F. Levelt1,2,4 5 

1Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands 
2Department of Geoscience & Remote Sensing, Delft University of Technology (TUD), Delft, the Netherlands 
3Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium 
4National Center for Atmospheric Research (NCAR), Boulder, Colorado, the United States 

Correspondence to: Yutao Chen (yutao.chen@knmi.nl), Jieying Ding (jieying.ding@knmi.nl) 10 

Abstract. The rapid development of the economy and the implementation of environmental policies adapted in 

India has led to fast changes of regional SO2 emissions. We present a monthly SO2 emission inventory for India 

covering December 2018 to November 2023 based on the TROPOMI Level-2 COBRA SO2 dataset, by using an 

improved flux-divergence method and estimated local SO2 lifetime which includes both its chemical loss and dry 

deposition. We update the methodology to use the daily CAMS model output estimates of the hydroxyl-radical 15 

distribution as well as the measured dry deposition velocity to account for the variability in the tropospheric SO2 

lifetime. It is the first effort to derive the local SO2 lifetime for application in the divergence method The results 

show the application of the local SO2 lifetime improves the accuracy of SO2 emissions estimation when compared 

to calculations using a constant lifetime. Our improved flux-divergence method reduced the spreading of the point 

source emissions compared to the standard flux-divergence method. Our derived averaged SO2 emissions covering 20 

the recent 5 years are about 5.2 Tg year-1 with a monthly mean uncertainty of 35%, which is lower than the bottom-

up emissions of 11.0 Tg year-1 from CAMS-GLOB-ANT v5.3. The total emissions from the 92 largest point 

source emissions are estimated to be 2.9 Tg year-1, lower than the estimation of 5.2 Tg year-1 from the global SO2 

catalog MSAQSO2LV4. We claim that the variability in the SO2 lifetime is important to account for in estimating 

top-down SO2 emissions. 25 
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1 Introduction 35 

Sulfur dioxide (SO2) is a reactive gas-phase air pollutant released through natural processes, such as volcanic 

eruptions and passive degassing (Oppenheimer et al., 2011; Carn et al., 2017), as well as anthropogenic activities, 

primarily from thermal power plants, fossil fuel combustion, and metal smelting and refining (Smith et al., 2011; 

Klimont et al., 2013; Serbula et al., 2014). After being released into the atmosphere, SO2 is primarily oxidized in 

the gas-phase by the hydroxyl radical (OH) to form sulfuric acid (H2SO4(g)) or scavenged into cloud droplets and 40 

subsequential oxidized to form sulphate (SO4
2-) via the reaction of ozone and hydrogen peroxide (Steinfeld, 1998). 

Gaseous SO2 and particulate SO4
2- have detrimental effects on human health via increasing the Particulate Matter 

concentrations (PM1.0, PM2.5). Exposure to SO2 pollution, whether long or short term, is associated with 

increased respiratory morbidity (Chen et al., 2007; Clark Nina et al., 2010; Chen et al., 2012; Rodriguez-

Villamizar et al., 2015). Sulfuric acid rain induces acidification in both aquatic and terrestrial ecosystems, causing 45 

harm to animals and plants (Larssen et al., 2006; Shukla et al., 2013). Additionally, SO4
2- contributes to reduced 

visibility (Leaderer et al., 1979) and acts as a precursor of cloud formation via increasing the Cloud Condensation 

Nuclei (CCN), subsequently impacting regional and global climate (Lelieveld and Heintzenberg, 1992; Arnold, 

2006). 

There have been profound changes regarding global anthropogenic SO2 emissions in the past decades. Specifically, 50 

global SO2 emissions have decreased by 31% between 1990-2015 due to the mitigation efforts in Europe and the 

USA, which have reduced regional SO2 emissions, while East Asia witnessed a 70% increase in 1990-2005, 

followed by a decreasing trend thereafter (Kuttippurath et al., 2022). Contrary to the declining trend in China 

(Klimont et al., 2013; Li et al., 2017b; Zheng et al., 2018; van der A et al., 2017; Qu et al., 2019), Indian emissions 

have surged from 4.5 to 15.0 TgS per year between 1990 and 2015 (Crippa et al., 2018; Aas et al., 2019), after 55 

which India became the world’s largest emitter of anthropogenic SO2. (Li et al., 2017b; Li et al., 2017a). Given 

India’s substantial dependence on coal-based thermal power plants to fulfill its growing energy demand, it is 

anticipated that the emissions will continue to rise driven by the population growth and economic development 

(Venkataraman et al., 2018).  

With the development of satellite-based measuring instruments, not only the large SO2 sources, but also the 60 

weaker ones, can be monitored from space. These satellite measurements provide effective near real-time 

information, including SO2 Vertical Column Densities (VCDs), data quality (QA value), to locate the potential 

SO2 hot spots and estimate point-source emission terms. During the 1980s, only SO2 emitted from large volcano 

eruptions could be monitored from space by the Total Ozone Mapping Spectrometer (TOMS) and the Solar 

Backscattered Ultraviolet (SBUV) instruments (Krueger, 1983; McPeters et al., 1984; Krueger et al., 2000). After 65 

that, the Global Ozone Monitoring Experiment (GOME), launched in 1995, enabled the detection of large 

industrial SO2 sources for the first time (Eisinger and Burrows, 1998; Khokhar et al., 2008). Subsequently, the 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument 

launched in 2002 (Bovensmann et al., 1999), the Global Ozone Monitoring Experiment-2 (GOME 2) instrument 

launched in 2006 (Callies et al., 2000), and the Dutch-Finnish Ozone Monitoring Instrument (OMI) instrument 70 

launched in 2004 (Levelt et al., 2006) were used to detect sources and monitor emissions from human activities 

with greater details (Carn et al., 2007; Lee et al., 2011; McLinden et al., 2016). Half of the reported anthropogenic 

sources can be detected and quantified with OMI SO2 measurements (Fioletov et al., 2015; 2016). Nowadays, the 
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Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5P satellite has become one 

of the most widely used satellite-based monitoring instruments (Veefkind et al., 2012; Theys et al., 2017). 75 

TROPOMI supplies daily global coverage for SO2 Tropospheric Vertical Column Densities (TVCDs) from 2018 

to the present. The measurements have a horizontal resolution of approximately 5.5 km × 3.5 km (7 km × 3.5 km 

before August 6, 2019) at nadir viewing geometry. The TROPOMI SO2 product reprocessed by the Covariance-

Based Retrieval Algorithm (COBRA) has largely reduced the SO2 noise level and uncertainties as compared to 

earlier SO2 datasets derived from TROPOMI or other satellite instruments (Theys et al., 2021). It makes the SO2 80 

measurements more sensitive to minor SO2 sources down to 8.0 Gg year-1(Theys et al., 2021), which indicates 

that more SO2 sources can be detected and quantified with the COBRA datasets (Fioletov et al., 2023). 

With the significant advancement of satellite-based monitoring instruments over the past decades, a variety of 

inversion methods have been developed to constrain emissions more efficiently. Data assimilation has been used 

by combining satellite observations and a chemical transport model (CTM) to derive emissions of trace gases, 85 

such as NOx (Miyazaki et al., 2017; Mijling and van der A, 2012), VOCs (Koohkan et al., 2013), CH4 (Meirink et 

al., 2008) and SO2 (Tsikerdekis et al., 2023). The mass balance method is a less expensive approach for deriving 

emissions directly from satellite observations without involving a CTM. For example, Leue et al. (2001) and 

Martin et al. (2003) started to calculate the NOx emissions based solely on sink terms, ignoring the effect of 

atmospheric transport. Recently, Fioletov et al. (2011; 2015; 2016; 2023) identified SO2 point sources using a 90 

plume fitting method and quantified emissions based on the mass balance principle with a fixed 6-hour effective 

time. Beirle et al. (2011) used the plume fitting method to derive the NOx emissions from the large megacity 

sources and a mean lifetime of NO2 of 4 hours. Later, Beirle et al. (2019) determined the total NOx emissions 

using the divergence method, while also calculating point-source emissions using a 2D-Gaussian peak fitting 

method with a fixed 4-hour lifetime. It is noteworthy that the sink term, controlled by the tropospheric lifetime, 95 

plays a crucial role in determining the final emission terms according to the mass balance principle. However, 

previous studies have assumed a constant lifetime for the sink term estimation, which can lead to the spreading of  

emissions (Beirle et al., 2019). Consequently, deriving realistic local SO2 lifetimes, which varies from several 

hours to several days (Chin et al., 2000; Hains et al., 2008; Lee et al., 2011; Green et al., 2019), is crucial to 

calculate quantitatively accurate SO2 emissions. 100 

In this study, we will constrain Indian SO2 emissions for the period December 2018 to November 2023 based on 

daily TROPOMI SO2 observations. The flux-divergence method, i.e. adding the independently derived SO2 sink 

term and its divergence to obtain local emissions, is used for the emission estimation. Since the sink term is 

determined by the lifetime, we will initially derive the SO2 local effective lifetime by incorporating the SO2 

chemical loss and dry deposition. Subsequently, we will improve the divergence method to generate a high 105 

resolution of 0.1° × 0.1° emission map, mitigating the smoothing of the emission map. We will estimate the SO2 

emissions using the derived SO2 local lifetimes and the enhanced divergence method. We then will conduct a 

comparative analysis with existing bottom-up and top-down emission data. The article is organized as follows: 

the datasets for the divergence and sink terms calculation, and SO2 emissions datasets against which our results 

are compared are introduced in Sect. 2. Section 3 discusses the basic principles of emission calculation and the 110 

method to derive the SO2 lifetimes. Section 4 illustrates the magnitude of the spreading in the original divergence 

method and how we reduce this smoothing of the emission map on various spatial resolutions. The uncertainties 

associated with the resulting SO2 emission estimates are discussed in Sect. 5. The regional Indian emission 
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estimations, comparisons with respect to existing estimates, and emission changes during the study period are 

given in Sect. 6. Finally, in Section 7 we present our conclusions. 115 

2 Data 

2.1 Satellite observations and wind field datasets 

TROPOMI on the ESA Copernicus Sentinel-5P satellite was launched on 13 October 2017 (Veefkind et al., 2012). 

TROPOMI is a hyperspectral nadir sensor consisting of UV–Vis–NIR spectrometers, monitoring key atmospheric 

species with high accuracy, including NO2 O3, SO2, CH4, CO, and HCHO as well as aerosol and cloud information. 120 

The Sentinel-5P satellite overpass time is about 13:30 local time. The spatial resolution for the center of the swath 

is approximately 5.5 km × 3.5 km (7 km × 3.5 km before August 6, 2019). In this study, the SO2 emissions are 

based on the TROPOMI SO2 product reprocessed by the Covariance-Based Retrieval Algorithm (COBRA) (Theys 

et al., 2021). The TROPOMI Level-2 COBRA SO2 data is extracted from December 1, 2018 to November 30, 

2023 for the SO2 divergence calculation. To ensure the high quality of the measurements, only data with a “QA 125 

value” larger than 0.5 and “surface height” lower than 3 km are used. (https://data-portal.s5p-pal.com/product-

docs/so2cbr/S5P-BIRA-PRF-SO2CBR_1.0.pdf, last access: 29 July, 2024). Wind field information is needed for 

the divergence calculation. We used the wind field from the daily operational 12h forecasts of European Centre 

for Medium-range Weather Forecasts (ECMWF) with a resolution of 0.25° × 0.25° 

(https://www.ecmwf.int/en/forecasts, last access: 29 July, 2024). The wind fields are interpolated at the mid-point 130 

of the Planetary Boundary Layer (PBL). 

2.2 Copernicus Atmospheric Monitoring Service (CAMS) datasets  

CAMS have been regularly publishing global forecasts for atmospheric composition from 2015 to present on the 

ECMWF website (https://ads.atmosphere.copernicus.eu, last access: 29 July, 2024) (referred to as the CAMS 

forecast datasets hereafter). The forecast itself uses ECMWF’s Integrated Forecast System (IFS) for the data 135 

assimilation and modeling of the concentration of over 50 chemical species (including SO2 and OH), 7 different 

types of aerosols, and several meteorological factors provided with a resolution of 0.4° × 0.4°. The CAMS forecast 

datasets are available for 137 vertical layers with a temporal resolution of 3 hours. 

Calculating the chemical lifetimes of SO2 involves deriving a monthly mean OH climatology (derived from 5-

year OH concentration as detailed in Section 3.2). This climatology is based on the monthly mean OH 140 

concentrations accessible within the CAMS forecast datasets. Specifically, the OH concentration averaged within 

the PBL at 6 UTC (11:30AM local time) are used. To ensure a stable OH climatology less influenced by extreme 

weather events, such as large-scale precipitation occurring on individual days, the monthly mean OH 

concentrations are averaged over the years from 2018 to 2023. 

2.3 SO2 emission and source datasets 145 

Indian SO2 emissions taken from the bottom-up inventories, i.e. the Emissions Database for Global Atmospheric 

Research version 8 (EDGARv8) between 2018 to 2022 (Crippa et al., 2024), CAMS global anthropogenic monthly 

emissions version 5.3 (CAMS-GLOB-ANTv5.3) (Soulie et al., 2023) from 2018 to 2023, and the top-down SO2 

global catalog, the Multi-Satellite Air Quality Sulfur Dioxide (SO2) database Long-Term L4 Global V2 (refers to 

https://data-portal.s5p-pal.com/product-docs/so2cbr/S5P-BIRA-PRF-SO2CBR_1.0.pdf
https://data-portal.s5p-pal.com/product-docs/so2cbr/S5P-BIRA-PRF-SO2CBR_1.0.pdf
https://www.ecmwf.int/en/forecasts
https://ads.atmosphere.copernicus.eu/
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MSAQSO2L4 hereafter) (Fioletov et al., 2023) from 2019 to 2022, are used for the comparison of the final 150 

emission fluxes.. The total Indian emissions from CAMS-GLOB-ANT v5.3 and EDGAR v8 show little variation 

in recent years, about 11.0 Tg year-1 in each year. The total emissions of India’s 92 large point sources from 

MSAQSO2LV4 are 5.3, 4.9, 5.2, 5.6 Tg year-1 during 2019 to 2022, respectively. The locations of Indian thermal 

power plants we use in this study originates from the Open Infrastructure Map 

(https://openinframap.org/stats/area/India, last access: 29 July, 2024). 155 

3 Method description 

This flux-divergence method is initially proposed by Beirle et al. (2019) and has been refined and applied in 

estimating emissions of trace-gases like NOx (Beirle et al., 2021) and CH4 (Liu et al., 2021). Here we apply it for 

the derivation of SO2 emissions. The steady-state equation governing the flux-divergence method is described as 

follows: 160 

𝐸 = 𝐷 + 𝑆,           (1) 

with D, E and S being the terms of divergence, emission and sink of SO2, respectively. This equation shows that 

the SO2 emissions are obtained by adding estimates of SO2 divergence and sink terms. The two main steps, the 

divergence calculation, and the sink calculation, are discussed below. 

3.1 Calculation of the divergence  165 

Eq. (2) defines divergence (D) as the continuity equation of the flux (�⃗�), incorporating SO2 VCDs (V) and wind 

field data (�⃗⃗⃗�): 

𝐷 = 𝛻 ∙ �⃗⃗⃗� = 𝛻(�⃗⃗⃗⃗� ∙ 𝑉).          (2) 

Note that because both VCDs and wind information are available on a grid-scale rather than a continuous state, 

the Second Order Central Finite Difference Method (SOCFDM) is used to approximate the divergence. The daily 170 

divergence of a grid cell needs to be derived for both x and y directions (see the one-dimensional example in 

supplementary information). 

3.2 Calculation of the sink term 

The relation between sink term, atmospheric density, and lifetime can be expressed as: 

𝑆 =
𝑉𝑠𝑜2

𝜏
,            (3) 175 

with S the SO2 sink term, 𝑉𝑠𝑜2
the SO2 VCD, and τ the SO2 effective lifetime. The SO2 VCDs are taken from the 

satellite measurements. The SO2 lifetime is determined by various processes in the atmosphere responsible for 

removing SO2, including deposition and chemical loss. As the deposition and chemical loss occurs simultaneously, 

the SO2 effective lifetime τ is defined as follows: 

1

𝜏
=

1

𝜏𝑐
+

1

𝜏𝑑
,           (4) 180 

where c is the chemical lifetime and d is the lifetime related to SO2 dry deposition.  

https://openinframap.org/stats/area/India
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3.2.1 Calculation of the chemical lifetime 

Oxidization by OH(g) determines the SO2 chemical lifetime in the atmosphere under cloud-free conditions (Blitz 

et al., 2003; Long et al., 2017; Green et al., 2019). This reaction occurs primarily during daytime hours with 

maximum sunlight under humid conditions. Considering the TROPOMI overpass time is 1:00PM local time, 185 

coinciding with peak OH concentrations and favorable conditions for SO2+OH reaction, we assume the SO2 

lifetime dominance via OH oxidation. Therefore, we use the model simulated OH concentration at 11:30AM local 

time, which is closest to the TROPOMI overpass time from CAMS forecast datasets, to calculate the chemical 

lifetime 𝜏𝑐 (s-1) as follows: 

𝜏𝑐 =
1

𝑘[𝑂𝐻]
 ,           (5) 190 

with k being the chemical rate coefficient (molecules-1 cm3 s-1) and [OH] denoting the OH concentration 

(molecules cm-3), i.e., OH column density within PBL divided by the PBL height. The rate coefficient k depends 

on the atmospheric temperature, and is calculated following Table2-1 in Vladimir et al. (2015). Due to the OH 

concentrations exhibiting a clear seasonal cycle (Lelieveld et al., 2016), we derive a monthly OH climatology 

(December 2018 to November 2023) and calculate k to estimate the SO2 chemical lifetime per month per grid cell 195 

as shown in Fig. S1. The estimated SO2 monthly mean chemical lifetime varies from 16 to 34 hours. While the 

distribution of the SO2 chemical lifetime does not show big differences within the same season, it has a clear 

seasonality, with the lowest chemical lifetime occurring in summer and the highest in winter. The chemical 

lifetimes averaged for the whole of India in winter, spring, summer, and autumn are 31, 18, 16 and 22 hours, 

respectively. The variation in SO2 chemical lifetime is also notable across various regions. The SO2 chemical 200 

lifetime in northern regions is larger than that in the south, with an exception occurring in summer when there is 

less spatial variation in lifetime. This is because more OH can be generated at low latitudes in the lower to middle 

troposphere due to the small solar zenith angle and high concentration of water vapor (Crutzen and Zimmermann, 

1991; Spivakovsky et al., 2000). As these papers show the OH concentration near the Equator remains consistently 

high throughout all seasons, leading to less variable chemical lifetimes in southern India compared to the north 205 

(Fig. S1). 

3.2.2 Deposition lifetime 

Wet and dry deposition influences the SO2 lifetime in the atmosphere. However, given that all the data used in 

this study only pertains to cloud-free conditions, our analysis only considers the impact of dry deposition i.e. direct 

loss to the surface. Previous studies have indicated that SO2 dry deposition lifetimes spanning several days 210 

(Matsuda et al., 2006; Faloona et al., 2009; Hayden et al., 2021). Here we use an 0.4 cm s-1 as a general dry 

deposition velocity, which is based on measurements from Hicks (2006), Myles et al. (2007) and Faloona et al. 

(2009). The SO2 monthly dry deposition lifetime within the PBL height is calculated by dividing the PBL height 

(from ECMWF data) by 0.4 cm s-1 (Slinn et al., 1978). As shown in Fig. S2, the Indian SO2 monthly mean dry 

deposition lifetime varies from 55 to 135 hours, with the longest lifetime occurring in spring. The dry deposition 215 

lifetimes averaged over the whole of India in winter, spring, summer, and autumn are 62, 120, 75, and 70 hours, 

respectively. The lifetime is longer in spring due to the higher PBL in this season. 
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3.2.3 The SO2 effective lifetime  

Following Eq. (4) we combine the SO2 chemical lifetime and dry deposition terms to calculate the SO2 monthly 

effective lifetime for each grid-cell to derive the local sink term. The SO2 monthly mean effective lifetime in India 220 

varies from 12 to 19 hours (Fig. S3). Figure 1 displays SO2 effective lifetimes averaged for each season. The SO2 

seasonal mean lifetimes averaged for India in winter, spring, summer, and autumn are 19, 15, 12, and 16 hours, 

respectively. After considering the SO2 dry deposition, the annual mean SO2 effective lifetime decreases by 27% 

compared to only considering the chemical loss, reducing the fraction transported away from strong point sources. 

 225 

Figure 1. SO2 seasonal mean effective lifetime in India. Lifetime in each season is averaged for the period from 

December 2018 to November 2023. (a) Winter DJF: Dec-Jan-Feb; (b) Spring MAM: Mar-Apr-May; (c) Summer JJA: 

June-July-Aug; (d) Autumn SON: Sep-Oct-Nov. The white region represents the areas with surface heights larger than 

3 km or the areas without high-quality SO2 measurements. These regions are not discussed in this study.  

 230 
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3.2.4 The SO2 effective lifetime validation 

The monthly mean SO2 effective lifetime is calculated based on OH oxidation and the SO2 dry deposition. We 

assume negligible influence on lifetime from SO2 wet deposition and other chemical reactions occurring in the 

cloud’s droplets in terms of monthly mean lifetime, especially since we use only cloud-free observations. To show 

this, we derive a monthly mean SO2 lifetime (�̅�) from the CAMS model by considering all SO2 producing 235 

processes and all kinds of sink according to Eq. (6), 

𝜏̅ =
𝐶

𝐸
,            (6) 

with C being the total SO2 concentration and E the total SO2 emissions. We sum both the concentrations and the 

emissions of the model for each month covering entire India to derive a monthly mean averaged C and E for the 

whole India. Fig. 2 shows the monthly �̅�  in 2019-2020 and 2022-2023 based on the CAMS model. This model-240 

intrinsic SO2 lifetime of each month consistently exceeds 7 hours. The lowest lifetime is in summer, around 9.5 

hours on average, while the longest lifetime is in winter, around 25.5 hours on average. The lifetime in spring and 

autumn is comparable, around 19 hours on average. Note that the CAMS model includes both dry and wet 

deposition of SO2. The noticeable monthly/seasonal variation of lifetime align well with our calculations based 

on the OH oxidation and SO2 dry deposition, indicating our calculated SO2 lifetime will not change significantly 245 

even if wet deposition and other chemical reactions are considered now. At the same time, we see a large variation 

both spatially as in the average from month to month. Therefore, we will use the monthly-averaged local lifetime 

from here on. 
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 250 

Figure 2. Monthly averaged SO2 lifetime in India for (a) 2019-2020 and (b) 2022-2023. The lifetime is calculated by 

accounting all SO2 producing processes and all kinds of sink in the CAMS model. 

 

3.3 Emission calculation 

The final emission term is the sum of the flux-divergence and sink term, and can be expressed as: 255 

𝐸 = 𝐷 + 𝑆 = 𝛻(�⃗⃗⃗� ∙ 𝑉𝑠𝑜2
) +

𝑉𝑠𝑜2

𝜏
 

= �⃗⃗⃗� ∙ 𝛻(𝑉𝑠𝑜2
) + 𝑉𝑠𝑜2

∙ 𝛻(�⃗⃗⃗�) +
𝑉𝑠𝑜2

𝜏
,        (7) 

where �⃗⃗⃗� ∙ ∇(𝑉𝑆𝑂2
) is the flux-divergence of the SO2 concentrations, 𝑉𝑆𝑂2

∙ 𝛻(�⃗⃗⃗�) is the wind divergence, and the 

last term describes the sink. The wind divergence term considers the vertical transport, which contributes to the 

divergence of the wind and can affect the calculated emissions. To calculate this wind divergence term , we follow 260 

the method described in Bryan (2022) to remove the wind divergence from the equation. To minimize the impact 

of noise on the SO2 measurements, we average the divergence over each season. Emissions for each month are 

then calculated by summing the monthly sink term and the divergence term of the corresponding season. The 

divergence calculation can be conducted on different spatial scales. Given the aimed resolution for the emissions 
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is 0.1° × 0.1°, the divergence calculation can be conducted on a 0.1° × 0.1° regular grid cell (which corresponds 265 

to an approximate surface area of 10 km × 10 km) after integrating the measured SO2 VCDs to the regular grid 

cells. The divergence can also be calculated based on the TROPOMI measured pixels (5.5 km× 3.5 km) and later 

integrated to the regular grid cells of 0.1°× 0.1°. The integration from the TROPOMI pixels to regular grid cells 

is based on the weight of the overlap areas. The divergence calculation on different spatial resolutions mentioned 

above are both conducted in this study. 270 

3.4 Closed loop validation approach  

To verify both the flux-divergence method and the derived OH climatology, we have tested our method using the 

simulated data from CAMS forecast datasets with the known input emissions CAMS-GLOB-ANT v4.2 (Fig. 3). 

We use the simulated SO2 VCDs within the PBL and the wind field at the mid-point of the PBL from the CAMS 

forecast datasets (0.4°×0.4°) from December 2019 to November 2020 to calculate the CAMS top-down SO2 275 

emissions with the flux-divergence method, in which the sink term is calculated following Section 3.2. The 

CAMS-GLOB-ANT v4.2 (Soulie et al., 2023), which are applied in the CAMS forecast datasets across 2019/2020, 

is used for comparison with the CAMS top-down SO2 emissions. If they align closely, it indicates that the lifetime 

and flux-divergence method work well in this process.  

 280 

 

Figure 3. Illustration of the closed loop validation. 

 

4 Improvement of the flux-divergence calculation 

To verify the performance of the flux-divergence method, it is initially tested in a closed loop validation to 285 

calculate the CAMS top-down SO2 emissions with a resolution of 0.4° × 0.4°. Figure 4a shows the model input 

emissions (CAMS-GLOB-ANT v4.2) and Fig. 4b shows the CAMS top-down SO2 emissions derived with the 

original flux-divergence method (hereafter referred to as the Classic Divergence Method (CDM)). The total 
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CAMS top-down SO2 emissions for the Indian domain are 15.0 Tg year-1, close to 13.6 Tg year-1 calculated in the 

CAMS-GLOB-ANT v4.2. However, the distribution differences between the two maps are significant. The map 290 

of Fig.4a shows a more distinct emission signal at precise locations representing point-sources, whereas the 

emission map from Fig. 4b shows a noticeable spreading effect of point sources. This effect leads to a large 

difference in the emissions at the source locations. The spreading effect in the emissions derived with the CDM 

is a result of using the SOCFDM to approximate the continuity equation of the divergence calculation (Eq. S(1)), 

since it effectively involves a linear interpolation. To show this, Eq. S(1) used to calculate the divergence in grid 295 

cell i along x direction can be rewritten as: 

𝐷𝑥(𝑖) =
1

2
[

( �⃗�𝑥(𝑖+1)−�⃗�𝑥(𝑖) )

∆𝑥
+

( �⃗�𝑥(𝑖)−�⃗�𝑥(𝑖−1) )

𝛥𝑥
].        (8) 

Here, �⃗�𝑥(𝑖) denotes the flux of SO2 in grid cell i along the x direction, and 𝛥𝑥 is the resolution of the grid-scale 

data. Then the divergence in grid cell i along x direction can be expressed as: 

𝐷𝑥(𝑖) =
1

2
[𝐷𝑅𝐸(𝑖) + 𝐷𝐿𝐸(𝑖)],         (9) 300 

with 𝐷𝑅𝐸(𝑖) and 𝐷𝐿𝐸(𝑖) representing the divergence at the right edge and the left edge of grid cell i. Thus, the 

divergence of each grid cell is essentially a linear interpolation of the divergence at the grid cell edges. If we 

perceive the divergence interpolation as a divergence allocation, the linear interpolation of the divergence 

essentially means that half of the divergence is allocated to the source location grid cell, while the remaining half 

is allocated to the grid cell adjacent to the source location grid cell, resulting in the spreading effect (Fig. S4c). 305 
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Figure 4. The CAMS model input and CAMS top-down SO2 emission distribution in the winter season (Dec-Jan-Feb) 

of 2019/2020. The emissions from (a) the CAMS-GLOB-ANT v4.2 inventory, and emissions derived with (b) the CDM, 

(c) method A, and (e) method B are shown. (d) shows the difference in emissions between the CDM and method A. (f) 

shows the difference in emissions between the CDM and method B. The black circles represent the locations of the top 310 
50 emissions in the CAMS-GLOB-ANT v4.2 inventory. 

 

As the spreading is a result of the discrete steps in SOCFDM, the improvements mainly focus on using different 

divergence interpolation/allocation methods to reduce the spreading and make the emission signals “sharper” in 

the source locations. In the one-dimensional situation along the wind, the highest SO2 concentration occurs 315 

downwind of the source (Fig. S4b). The largest SO2 VCD gradient is displayed around the source especially 

upwind (Fig. S4a). Considering this distribution, we conduct method A, assigning all of the edge divergence to 

the grid cell, whose opposite edge has the larger SO2 VCD gradient (see formula in Section 5 in supplementary 

information). Figure. 4c using method A shows that the spreading effect is reduced efficiently compared to Fig. 

5b using the CDM. The most notable improvements are observed in the source locations, suggesting that method 320 

A can yield a higher-quality emission inventory. However, compared to the input emissions used in CAMS and 

shown in Fig. 5a, method A still shows a clear spreading effect. Although method A is very effective in a 

theoretical one-dimensional example, it is much less efficient in two dimensions, where the grid cells and wind 

direction (i.e. the plume) are usually not aligned. The highest SO2 concentration downwind of the source can be 

dispersed across multiple grid cells in the two-dimensional situation. Therefore, the peak concentration usually 325 

occurs at the source location (See Fig. S5). Based on this, we have developed a more advanced methodology 

(hereafter referred to as method B), which allocates all of the edge divergence to the grid cell with the larger SO2 

VCD (See formula in Section 6 in supplementary information). The emission map derived with method B provide 

better results when compared to the CDM as shown in Fig. 5f and method A as shown in Fig. S6b. It is noteworthy 

that only the distribution is different between emissions derived with CDM, method A and B. The total amount 330 

of SO2 emissions derived with the different methods remain the same. This is because the total divergence over 

the domain equals to zero and the total emission amount is solely determined by the SO2 sink term. We 

subsequently adopt method B to calculate divergence at the resolution of 0.1°×0.1° (about 10 km×10 km) and at 

the finer scale of the TROPOMI measured pixels (about 5.5 km×3.5 km), respectively. The divergence of the 

TROPOMI measured pixels are also gridded to 0.1°× 0.1° afterwards. From Fig. 5 we see that emissions from 335 

point sources derived from the TROPOMI measured pixels are more convergent to the point source location (less 

smoothing), although the background noise seems also enhanced. For each test method B shows emission maps 

with a higher spatial resolution than the other methods. Considering the outcome of these tests, our calculated 

emissions will be based on the divergence on TROPOMI measured pixels derived with method B. For emissions 

of an individual point source (e.g. a power plant), we will sum all emissions in the 5×5 grid cells around the point-340 

source, because part of the spreading effect still remains in the results. 
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Figure 5. The SO2 emission distribution in the winter season (DJF) of 2019/2020 in a selected domain ((17°N, 25°N), 

(78°E, 87°E)) with large thermal power plants (a-d). The emissions (a, c) are derived from the divergence calculated 

directly on a 0.1° resolution using the CDM (a) and method B (c). (b, d) Emissions are derived based on the divergence 345 
calculated on the TROPOMI measured pixels using the CDM (b) and method B (d). (e, f) The difference in emissions 

between method B and the CDM and (method B-CDM) for the divergence calculated directly on 0.1° resolution (e) and 

derived on the TROPOMI measured pixels (f). The green circles represent the locations of thermal power plants with 

annual power generation larger than 1000MW (from Open Infrastructure Map 

(https://openinframap.org/stats/area/India, last access: 29 July, 2024).) 350 

 

5 Uncertainties assessment 

As the uncertainty is mainly determined by the sink term, the SO2 emissions uncertainty involves the uncertainties 

from the measured SO2 VCDs and those associated with the SO2 effective lifetime, of which the latter is primarily 

related to the OH concentrations and dry deposition velocity. The SO2 VCDs uncertainty is mainly from the 355 

calculation of Air Mass Factors (AMFs). Here we apply an averaged AMFs uncertainty of about 30% for the 

individual measurement column, which is estimated from S5P/TROPOMI SO2 ATBD file 

(https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-ATBD-SO2-TROPOMI, last access: 29 July, 

2024). Considering there are 17 effective measurements on average for each month across India, the uncertainty 

from AMFs for monthly mean SO2 VCDs is calculated to be about 7% (
30%

√17
). The uncertainty associated with the 360 

dry deposition velocity has only a second-order effect on the SO2 effective lifetime, with the uncertainty in the 

OH term dominating. If the dry deposition velocity increases by 100%, the effective lifetime for SO2 is only 

reduced by 20%. Since there is a lack of validation of OH concentration due to a scarcity of measurements, we 

assume the differences of the simulated OH by various models (IFS(CB05BASCOE), IFS(MOZART), 

IFS(MOCAGE)) as an estimate of the OH uncertainty, which can reach up to 50% (Huijnen et al., 2019). Changes 365 

in the OH density by ±50% generally translate to a maximum uncertainty of 60% increase or a 20% decrease in 

SO2 effective lifetime. Consequently, the uncertainties of Indian emissions mainly involve the uncertainties from 

SO2 VCDs and from the CAMS OH concentrations. Combining the uncertainties leads to an emission uncertainty 

ranging from maximum -42% to +33%. Therefore, we assume that the maximum uncertainty of the derived 

monthly emissions is about 35% (10% for annual values). 370 

6 Results 

6.1 Calculation of the SO2 emissions and the emission detection threshold 

We calculate the annual SO2 emissions over India for the period December 2018 to November 2023 (5 years). 

The 5-year averaged annual SO2 emission map in Fig. 6a effectively captures large emission hotspots. But the 

noise on the data hampers precise differentiation of the weakest SO2 point sources. To address this, we assess the 375 

noise level on the measurement or the emission detection threshold from a selected ocean region (within (5°N-

18°N) and (85°E- 90°E)), which typically contains no strong ship or other emissions. The frequency distribution 

of annual SO2 emissions (or background noise) within the selected region approximates a normal distribution with 

σ = 0.52 Gg year-1 as depicted by the blue bars in Fig. S7. We define the detection threshold as four times σ (about 

2.0 Gg year-1 per grid cell). The emissions sources above the detection threshold are shown in Fig. 6b-d. It displays 380 

https://openinframap.org/stats/area/India
https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-ATBD-SO2-TROPOMI
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a good location alignment with the source locations detected in MSAQSO2LV4 and the known thermal power 

plants.  

 

 

Figure 6. (a) The SO2 annual mean emissions averaged between December 2018 to November 2023. (b) shows the 385 
emissions above the detection threshold of 2.0 Gg year-1. (c) and (d) show the emissions of zoom-in areas 1 and 2 

respectively. The blue triangles represent the source locations identified by MSAQSO2L4. The green circles represent 

the locations of thermal power plants with annual power generation larger than 500MW from the Open Infrastructure 

map (https://openinframap.org/stats/area/India, last access: 29 July, 2024). The range of the color bar is scaled with 

the maximum value. 390 

 

The annual mean emissions for the whole of India from December 2018 to November 2023 are approximate 5.7, 

4.2, 5.1 and 5.1, 5.7 Tg year-1, with the 5-year averaged SO2 emissions being 5.2 Tg year-1 with an uncertainty of 

±5% (
35%

√60
). The sudden reduction in SO2 emissions in 2020 corresponds to the declining trend of coal consumption 

in the same year (IEA, 2023) likely due to the effects of the COVID-19 pandemic on energy consumption (Levelt 395 

https://openinframap.org/stats/area/India
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et al., 2022). The Indian SO2 emissions show a seasonality: the emissions in winter (DJF) are on average 0.50 Tg 

month-1, in spring (MAM) 0.57 Tg month-1, in summer (JJA) 0.25 Tg month-1 and in autumn (SON) 0.41 Tg 

month-1. During the summer season more additional power capacity from hydro and wind power is available 

(related to the monsoon) and less energy from coal-powerplants is needed (IEA, 2023).  

6.2 Comparison against other Indian SO2 emissions datasets 400 

We compare our SO2 emission fluxes against those taken from the global catalog MSAQSO2L4 for 92 strong SO2 

point-sources. The total SO2 emissions of 92 point sources averaged over 5 year are 2.9 Tg year-1, notably lower 

than the 5.2 Tg year-1 in MSAQSO2L4. The scatter plot in Fig. 7 shows the annual emissions averaged over the 5 

years study period. The strong and significant correlation (P<0.05) between the two emission datasets results in a 

Pearsons R value of 0.87, confirming the efficiency and accuracy of the divergence method for detection of strong 405 

point sources. To further explore the differences in these emissions terms depicted in Fig. 7a, we also calculate 

the emissions assuming a constant SO2 lifetime of 6-hour assumed in MSAQSO2L4 by Fioletov et al. (2023). This 

adjustment increases our SO2 emissions to 4.0 Tg year-1, which is closer to the total emissions of the MSAQSO2L4 

(Fig. 7b). But we see a noticeable smoothing effect and an overall positive bias on emissions estimated with a 

fixed 6-hour lifetime compared to the emissions estimated with a local, variable lifetime, especially around the 410 

source location (Fig. 7c, d and Fig. S8). This indicates that the lifetime of 6-hour is too short and the application 

of a non-constant SO2 lifetime to constrain SO2 emissions is more realistic. Consequently, we suggest that the real 

SO2 emissions in India are lower than emissions estimated with a fixed 6-hour lifetime.  
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Figure 7. (a) Comparison between SO2 emissions in this study derived using a variable lifetime (x-axis) and the 415 
corresponding SO2 emissions from the MSAQSO2LV4 catalog (y-axis). (b) same as (a) but for emissions derived with a 

6-hour lifetime on the x-axis. (c) SO2 emissions derived with the non-constant lifetime. (d) same as (c) but for emissions 

derived with a 6-hour lifetime. The point source emissions from MSAQSO2LV4 are averaged from 2019 to 2022. The 

emissions from this study are averaged from December 2018 to November 2023. 

 420 

To further compare the emissions to other inventories, we select our top 10 of highest emission sources (see 

locations in Fig. S9). Our top 10 sources are associated with thermal power stations, emitting in total 1.1 Tg year-

1, which accounts for 21% of all SO2 emissions in India. The comparison with the global catalog MSAQSO2LV4, 

and the bottom-up emission inventories, EDGAR v8 and CAMS-GLOB-ANT v5.3, are shown in Fig. 8. Generally, 

the emissions from our top 10 sources are lower than those reported by the other inventories. Except for 425 

Chandrapur (20.01°N, 79.29°E) and Durgaphur (23.55°N, 87.21°E), our top 10 sources are also listed in the Indian 

top 10 sources from MSAQSO2LV4. The largest emitter Vindhyachal, representing 5×5 grid cells around the 

Vindhyachal Superpower Station (24.9°N, 82.68°E), is also the largest SO2 emission source in CAMS-GLOB-

ANT v5.3 and EDGAR v8. Neyveli (11.55°N, 79.44°E) is the largest SO2 emitter in the MSAQSO2L4 and is the 
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third largest in our inventory. Within the 5 ×5 grid cells of Neyveli, several coal power plants are situated near a 430 

lignite mine. Our comparison of the highest emitter (Neyveli) in Fig. 7a, b indicates that the emission disparities 

between our inventory and MSAQSO2L4 cannot be solely attributed to different lifetimes, suggesting that the 

choice of inversion method can also play a key role in constraining emissions.  

 

 435 

 

 

Figure 8. A comparison of SO2 emission estimates from our 10 largest point-sources in India using the global catalog 

MSAQSO2LV4, EDGAR v8 and CAMS-GLOB-ANT v5.3 datasets. The sources are sorted by descending order of our 

emissions. The x-label lists the name of each source (i.e. power plant). For the inventories, the total emissions within 440 
5×5 grid cells centered by the source location is used for comparison. Emissions from MSAQSO2LV4 are averaged 

from 2019 to 2022. Emissions from EDGAR v8 are averaged from December 2018 to November 2022. Emissions from 

other inventories are averaged from December 2018 to November 2023. 

 

We calculate Indian SO2 emissions to be 5.2 Tg year-1 using the SO2 local lifetime, and 12.0 Tg year-1 using a 445 

fixed 6-hour lifetime. The country-total emission obtained with a local lifetime are about 50% lower than the 

reported emissions in the most used bottom-up inventories, i.e. CAMS-GLOB-ANT and EDGAR. The CAMS-

GLOB-ANT v5.3 inventory estimates that India emitted 11 Tg year-1 SO2 in 2023. However, the CAMS model 

simulated SO2 densities, driven by CAMS-GLOB-ANT v5.3, are much higher by a factor of 2 than the TROPOMI 

measurements (see the comparison for 2023 in Fig. 9). Considering the good data quality of the TROPOMI 450 

observations (Theys et al., 2021; De Smedt et al., 2021) and assuming the CAMS model has a good performance, 

we attribute the higher simulation results mainly to a positive bias in the emissions that were input to the model.  
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Figure 9. Indian SO2 vertical column densities (VCDs) averaged in 2023 from (a) CAMS global composition forecast 

dataset, and (b) TROPOMI Level-2 COBRA dataset (at about the overpass time of 6 UTC). We integrate the 455 
TROPOMI observations to a resolution of 0.4° × 0.4°, the same as the CAMS datasets. (c) is the difference obtained by 

subtracting (b) from (a). The data of the same days are used for comparison The CAMS SO2 density with total cloud 

coverage larger than 30% are excluded from the averaging. 

 

The total SO2 emissions in India were similar in 2019 and 2023, with lower emissions in the years in between. To 460 

explore the changes in detail, the difference in emissions between 2019 and 2023 of each point source is shown 

in Fig. 10. Overall, the total point source emissions are estimated to be 2.8 Tg year-1 in 2019 and 3.0 Tg year-1 in 

2023. The point sources exhibiting the largest changes belong to our top 10 sources. The emissions of Vindhyachal, 

the point source showing the largest decrease, were reduced by 17%, which is about 43 Gg year-1. This reduction 

may be partially attributed to the initiation of a carbon capture project at the Vindhyachal plant started in August 465 

2022 (PTI, 2022), which likely mitigates some of the SO2 emissions (Wang et al., 2011; Corvisier et al., 2013; 

Gimeno et al., 2017). The largest increasing emitter, Baradarha, increased over 75%, which is in total 107 Gg 

year-1 of SO2 emissions.  

 

 470 
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Figure 10. Absolute changes in the derived SO2 emissions for the most important point sources between December 2018 

and November 2023. The circle size denotes the size of the emissions in the last year (December 2022 to November 

2023). The circle color means changes in the last year compared to the emissions in the first year (December 2018 to 

November 2019). 475 

7. Conclusion 

In this study, we derived the Indian SO2 emissions using an improved flux-divergence method including a non-

constant SO2 lifetime. The improved divergence method largely removes the spreading effect on emissions that is 

typically introduced by the discretization in calculating the divergence. The non-constant lifetime approach proves 

more representative with respect to season and latitude as compared to adopting a fixed lifetime of 6 hours for the 480 

derivation of emission fluxes, especially for short-living species like SO2. Based on the non-constant lifetime the 

improved divergence method further constrains the SO2 emissions more closely to its source. The SO2 effective 

lifetime in India, derived from the SO2 chemical lifetime and dry deposition lifetime, is calculated for each grid 

cell. The SO2 chemical lifetime is primarily derived using an OH monthly climatology (December 2018 to 

November 2023). The variability in the monthly mean SO2 effective lifetime varies from 16 to 34 hours, with the 485 

longer chemical lifetime occurring in the winter season. The seasonality of the SO2 chemical lifetime is driven by 

the OH concentration, which is largely influenced by sunlight. Significantly different chemical lifetimes were also 

noted across various regions within the same season. The chemical lifetime in northern India is generally larger 

than in the south in spring, winter, and autumn. The SO2 monthly dry deposition lifetime varies from 55 to 135 

hours. After accounting for the SO2 dry deposition, the seasonality and regional variation of lifetime are reduced. 490 

The SO2 effective lifetime is 27% lower on average compared to the chemical lifetime. The SO2 monthly mean 

effective lifetime varies from 12 to 19 hours with the uncertainties of -20% to +60%. Our local effective lifetime 
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calculations align with the latest study, demonstrating that the species lifetime varies spatially due to the spatial 

variation of the influencing factor (Krol et al., 2024). 

Since the data are available in grid-scale instead of a continuous state, the divergence calculation will introduce a 495 

spreading effect to the calculated SO2 divergence and emissions. To reduce the spreading effect, we have tested 

two divergence allocation methods on the resolution of 0.4°×0.4°, 0.1°×0.1° and TROPOMI measured pixels and 

concluded that assigning all flux divergence to the grid cell with the larger SO2 VCD improved the results. After 

the implementation of the improved flux-divergence method, the smoothing of the emission map is mitigated 

efficiently. An emission map with more distinct emission signals has been obtained. 500 

Implementing the improved method with a non-constant SO2 lifetime, we calculated the SO2 emissions for India 

from December 2018 to November 2023. The total annual SO2 emissions in this period is about 5.2 Tg year-1 with 

a monthly mean uncertainty of 35%. The total annual SO2 emissions decreased from 2019 to 2020 due to the 

COVID-19 quarantine measures, then gradually increased to the same level as before COVID-19 in 2023. In 

contrast to the trend from MSAQSO2LV4 showing that the SO2 emissions reaching its highest point in 2022, our 505 

emissions in 2022 are the same as those in 2021, and lower than the emissions in 2019 and 2023. Even though the 

total power generation in 2022 is higher than the previous years (https://powermin.gov.in/en/content/power-

sector-glance-all-India, last access: 29 July, 2024) , the comparable emissions between 2021 and 2022 might be a 

result of the growth of renewable and non-fossil fuel power generation in 2022 

(https://powermin.gov.in/en/content/overview, last access: 29 July, 2024).  510 

The 92 SO2 large point sources are compared with the global catalog MSAQSO2LV4. Our total emissions of 2.9 

Tg year-1 are lower than the total emissions from MSAQSO2LV4 of 5.2 Tg year-1. The difference is mainly because 

Fioletov et al. (2023) used a fixed 6-hour lifetime for calculating emissions, while our derived monthly effective 

lifetimes varied from 12 to 19 hours. Using the fixed 6-hour lifetime can result in a smoothing of emission map 

with the divergence method and may lead to overestimation of the emissions. Our results show the SO2 emissions 515 

of the 92 point sources in India are similar between 2019 and 2023. The SO2 emissions at the largest point source, 

Vindhyachal, shows a reduction in the last years. This might be due to initiation of a carbon capture project at 

Vindhyachal. 

With the improvement in the divergence method and locally derived variability in the lifetime, gridded SO2 

emissions over a large area can be estimated efficiently. This method can be applied to any region in the world to 520 

derive SO2 emissions with a 0.1° ×0.1° resolution based on TROPOMI observations. For those regions with more 

Northerly latitudes than 40°N (e.g. Northern China, Eastern Europe) this methodology has the potential to 

significantly improve the top-down derivation of SO2 emission estimates.  
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