Preprints
https://doi.org/10.5194/egusphere-2024-1033
https://doi.org/10.5194/egusphere-2024-1033
11 Apr 2024
 | 11 Apr 2024

Diurnal evolution of non-precipitating marine stratocumuli in an LES ensemble

Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold

Abstract. We explore the impacts of the diurnal cycle, free-tropospheric (FT) humidity values, and interactive surface fluxes on the cloud system evolution of non-precipitating marine stratocumuli based on a large ensemble of large-eddy simulations. Cases are separated into three categories based on their degree of decoupling and cloud liquid water path (LWPc). A new budget analysis method is proposed to analyze the evolution of LWPc under both coupled and decoupled conditions. More coupled clouds start with relatively low LWPc and cloud fraction (fc) but experience the least decrease in LWPc and fc during the daytime. More decoupled clouds undergo greater daytime reduction in LWPc and fc, especially those with higher LWPc at sunrise because they suffer from faster weakening of a net radiative cooling. During the nighttime, a positive correlation between FT humidity and LWPc emerges, consistent with higher FT humidity reducing both radiative cooling and the humidity jump, both of which reduce entrainment and increase LWPc. The time rate of change in the LWPc is more likely to be negative for higher LWPc and greater inversion base height (zi), conditions under which entrainment dominates as turbulence develops. In the morning, the rate of the LWPc reduction depends on the LWPc at sunrise, zi, and the degree of decoupling, with distinct contributions from subsidence and radiation. Under well-mixed conditions, it takes about 10 h for the surface fluxes to offset 15 % of the changes in entrainment warming and drying, assuming no changes in transfer coefficients or surface wind speed.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

14 Nov 2024
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1033', Anonymous Referee #1, 04 Jun 2024
  • RC2: 'Comment on egusphere-2024-1033', Anonymous Referee #2, 03 Jul 2024
  • AC1: 'Comment on egusphere-2024-1033', Yaosheng Chen, 25 Aug 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1033', Anonymous Referee #1, 04 Jun 2024
  • RC2: 'Comment on egusphere-2024-1033', Anonymous Referee #2, 03 Jul 2024
  • AC1: 'Comment on egusphere-2024-1033', Yaosheng Chen, 25 Aug 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Yaosheng Chen on behalf of the Authors (25 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (06 Sep 2024) by Matthew Lebsock
RR by Anonymous Referee #1 (24 Sep 2024)
RR by Anonymous Referee #2 (24 Sep 2024)
ED: Publish subject to minor revisions (review by editor) (25 Sep 2024) by Matthew Lebsock
AR by Yaosheng Chen on behalf of the Authors (26 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (27 Sep 2024) by Matthew Lebsock
AR by Yaosheng Chen on behalf of the Authors (27 Sep 2024)

Journal article(s) based on this preprint

14 Nov 2024
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold

Viewed

Total article views: 537 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
390 117 30 537 38 23 17
  • HTML: 390
  • PDF: 117
  • XML: 30
  • Total: 537
  • Supplement: 38
  • BibTeX: 23
  • EndNote: 17
Views and downloads (calculated since 11 Apr 2024)
Cumulative views and downloads (calculated since 11 Apr 2024)

Viewed (geographical distribution)

Total article views: 537 (including HTML, PDF, and XML) Thereof 537 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 14 Nov 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Marine stratocumulus cloud is a type of shallow clouds that covers the vast areas of Earth's surface. They play an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.