Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-3096
https://doi.org/10.5194/egusphere-2023-3096
09 Jan 2024
 | 09 Jan 2024

Technical Note: Smartphone-based evapotranspiration monitoring

Adriaan J. Teuling and Jasper F. D. Lammers

Abstract. Evapotranspiration plays a key role in the terrestrial water cycle, climate extremes and vegetation functioning. However, the understanding of spatio-temporal variability of evapotranspiration is limited by a lack of measurement techniques that are low-cost, and that can be applied anywhere at any time. Here we show that evapotranspiration can be estimated accurately using only observations made by smartphone sensors. Individual variables known to effect evapotranspiration generally showed a high correlation with routine observations during a multi-day field test. In combination with a simple ML-algorithm trained on observed evapotranspiration, the smartphone-observations had a mean RMSE of 0.10 and 0.05 mm/h when compared to lysimeter and eddy covariance observations, respectively. This is comparable to an error of 0.08 mm/h when estimating the eddy covariance ET from the lysimeter or vice versa. The results suggests that smartphone-based ET monitoring could provide a realistic and low-cost alternative for real-time ET estimation in the field.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

22 Aug 2024
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024,https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The understanding of spatio-temporal variability of evapotranspiration is currently limited by a...
Share