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Abstract. Evapotranspiration plays a key role in the terrestrial water cycle, climate extremes and vegetation functioning. 

However, the understanding of spatio-temporal variability of evapotranspiration is limited by a lack of measurement techniques 

that are low-cost, and that can be applied anywhere at any time. Here we investigate the estimation of evapotranspiration and 

land surface energy balance partitioning using only observations made by smartphone sensors. Individual variables known to 10 

effect evapotranspiration as measured by smartphone sensors generally showed a high correlation with routine observations 

during a multi-day field test. In combination with a simple multivariate regression model fitted on observed evapotranspiration, 

the smartphone-observations had a mean RMSE of 0.10 and 0.05 mm/h during validation against lysimeter and eddy 

covariance observations, respectively. This is comparable to an error of 0.08 mm/h that is associated with estimating the eddy 

covariance ET from the lysimeter or vice versa. The results suggests that smartphone-based ET monitoring could provide a 15 

realistic and low-cost alternative for real-time ET estimation in the field. 

1 Introduction 

In most climates, more rainfall returns to the atmosphere via evapotranspiration than ends up in rivers. Evapotranspiration 

(commonly referred to as ET) also modulates near-surface climate by limiting the amount of direct warming by sensible heat 

fluxes. Under conditions of low soil moisture, reduced ET reflects ecosystem water stress, reduced carbon uptake, and a loss 20 

of agricultural production, as well as enhanced atmospheric warming through a shift in the land surface energy balance 

reflected in enhanced land surface temperatures. This makes ET a key indicator of environmental conditions and global change 

(Seneviratne et al., 2010; Denissen et al., 2022). In spite of its importance, few, if any, government agencies are tasked with 

the routine monitoring of ET. In addition, important gaps exist in our current ability to monitor ET, in particular limiting our 

understanding of how ET interacts with droughts and heatwaves (Teuling et al., 2013; Miralles et al., 2019; Lansu et al., 2020). 25 

Enhanced ET observation is key to filling those gaps. 

Traditionally, ET has been measured through the mass-balance principle applied to catchments or lysimeters. While this 

approach is generally accurate (Allen et al., 2011, Senay et al., 2011), it provides limited spatial and/or temporal detail. Flux 

towers equipped with eddy covariance sensors also measure ET through turbulent moisture transport, but such sites are 
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expensive to maintain, current tower locations are typically chosen for their relevance to the carbon balance (e.g. bias towards 30 

wetter sites with high carbon uptake) rather than to soil moisture-temperature coupling, and the footprint varies with wind 

conditions. ET can alternatively be estimated from Earth Observation (EO), typically using the thermal infrared atmospheric 

window of the electromagnetic spectrum (Derardja et al., 2024). While such approaches give valuable insight into the spatial 

distribution of ET, they rely on available satellite overpasses, cloud-free conditions, and ET inference models (Amani and 

Shafizadeh-Moghadam, 2023). Most ET inference models and more classical potential ET-based methods have been developed 35 

in times when actual ET observations were scarce. Due to increasing availability of observations in hydrology, but also ET in 

particular, machine learning approaches now often outperform existing models due to their ability to optimally utilize the 

information in observations (Kratzert et al., 2019). This calls for development of new observation methods to close the 

observational blind spot – methods that are low-cost, flexible, operating in real-time at high spatial and temporal resolution, 

and making use of machine learning where appropriate. 40 

Over the past decade, application of mobile phone technology to measure the terrestrial part of the hydrological cycle and 

associated meteorological variables has been gaining traction. It has been shown that precipitation, for instance, can be 

estimated from microwave links used in commercial cellular communication networks (Messer et al., 2006; Overeem et al., 

2013). Several free and commercial apps exist that can be used to monitor river discharge often based on water level and/or 

surface velocity estimates (Kampf et al., 2018; Fehri et al., 2020, Damtie et al., 2023). Air temperature can be estimated from 45 

sensors that monitor phone battery temperatures (Overeem et al., 2013), incoming radiation can be estimated from a calibrated 

phone’s light sensor (Al-Taani and Arabasi, 2018, Hukseflux, 2023), while external sensors have been developed for wind 

speed, temperature, pressure and humidity normally provided by weather stations. However all these estimates based on mobile 

phone technology would at best complement routine estimates of temperature, precipitation, or discharge made by dedicated 

government agencies. Measuring ET directly by smartphone has remained elusive.  50 

Ongoing advances in sensor developments now provide new opportunities. In particular, thermal infrared imagers have become 

more compact and affordable, allowing them to be integrated in a smartphone. In combination with other build-in or external 

handheld sensors for relevant meteorological variables, this allows for direct inference of evapotranspiration through the land 

surface energy balance. This procedure is conceptually similar to evapotranspiration estimation from Earth observation, but 

with the added benefits that it can be done in real-time, based on local meteorological conditions, and independent of cloud 55 

cover and satellite overpasses. This setup can be used to measure temporal evolution of surface energy balance partitioning at 

a specific location, or spatial patterns of flux partitioning, in particular in areas with high spatial variability such as urban 

environments. 

While smartphones can potentially monitor all variables relevant for ET, the question is if these estimates, when combined , 

provide enough information for accurate ET estimation under field conditions. Therefore, the primary goal of this feasibility 60 

study is to investigate how well smartphone-based estimates of surface fluxes from measurements of individual meteorological 

variables validate against routine measurements made by lysimeters and eddy covariance. To this end, two main research 

questions are addressed, namely: 1) Do handheld sensors provide robust estimates of standard meteorological variables 
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relevant for ET estimation? and 2) Can a simple multivariate regression model fitted to smartphone observations provide 

accurate ET estimates? These questions are addressed using observations made during field testing at a measurement site 65 

equipped with standard meteorological instrumentation, a large weighing lysimeter, and an eddy covariance tower to allow for 

validation of the individual meteorological variables as well as flux estimates. 

2 Methods and Data 

Figure 1 illustrates how smartphone-based ET monitoring might look in practice. In this study, a smartphone (model CAT S62 

Pro, referred to as S62 from hereon) was used to record surface temperature (Ts) using its build-in FLIR Lepton 3.5 thermal 70 

sensor. Because we focus on vegetated conditions, we assume emissivity does not differ from unity. Global radiation was 

estimated using the S62’s build-in light sensor, where the sensor was covered with 2 layers of standard paper in order to avoid 

sensor saturation when the sensor is exposed to direct sunlight. This procedure is similar to Hukseflux (2023). Because a 

phone’s lens typically does not capture light from all angles equally, luminance (I) measurements were taken with the phone 

held straight-up perpendicular to the sun, and the readings were later corrected for the solar angle using the phone’s pitch (ϕ, 75 

the angle between a plane parallel to the device's screen and a plane parallel to the ground). Both luminance from the light 

sensor and pitch were recorded using the Sensors app. A WeatherFlow WEATHERmeter, connected to the S62 via Bluetooth, 

was used to simultaneously record air temperature (Ta), pressure, relative humidity (RH), and wind speed (ws). To prevent 

bias, the WEATHERmeter was kept in a shaded and ventilated place in between measurements. The measurement principle is 

illustrated in Figure 1. 80 

 
Figure 1: Principle of smartphone-based monitoring. Due to the cooling effect of evapotranspiration, surface temperature reflects 
the partitioning of global radiation into evapotranspiration and sensible heat. Both the global radiation and the surface temperature 
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can be measured by phone’s internal sensors, while an external sensor can provide meteorological variables that affect 
evapotranspiration and surface energy balance partitioning. Colour bar indicates surface temperature (°C) as seen on screen. 85 
Picture taken on 5/8/22 by Janneke Remmers on Wageningen campus amid the 2022 summer drought (ambient air temperature 
21°C). 

 
Figure 2: Overview of conditions during Rietholzbach field campaign. Smartphone temperature observations (Ts and Ta) and Buël 
global radiation during the field campaign. Over the course of the 4-day campaign, measurements were taken at 36 moments. 90 
 

The field data were collected during daytime under rainless conditions from 10–13 September 2023 at the Büel meteorological 

station (Gähwil, Sankt Gallen, Switzerland), which is located within the pre-alpine Rietholzbach catchment. Data from this 

site has been used for numerous hydro(meteoro)logical studies (Teuling et al., 2010; Seneviratne et al., 2012; Hirschi et al., 

2017; Michel & Seneviratne, 2022). The site was chosen because ET is measured independently by a large weighing lysimeter 95 

(area 3.14 m2 and depth 2.5 m) and eddy covariance. Hourly values for standard meteorological variables, eddy covariance 

fluxes of sensible and latent heat, and lysimeter evapotranspiration were used to complement and validate the smartphone 

observations. The smartphone and Büel observations are available from Teuling  (2024). An overview of the conditions during 

the data collection is given in Figure 2, revealing a wide range of temperature and radiation conditions. It also illustrates the 

temporal dynamics of the difference between surface and air temperature, which is largest near the daily global radiation peak 100 

reflecting the strongest turbulent heat fluxes. Over the course of the 4-day campaign, measurements were taken at 36 moments. 

During the field campaign, estimating one direct ET observation (lysimeter or eddy covariance) by the other resulted in an 

RMSE of 0.084 mm/h, which for this site can be seen as a practical upper limit for errors associated with ET estimation in 

these conditions since it reflects the inherent uncertainty between two state-of-the-art methods. The sum of latent and sensible 

heat fluxes over the field campaign explained 98.7% of the net radiation, so a lack of energy balance closure likely does not 105 

explain this uncertainty.  



5 
 

From both theoretical considerations and observational evidence it is known that ET depends on a range of environmental 

variables. It is often assumed that these dependencies take a linear form, and many field studies have confirmed the validity of 

this assumption for different systems (Maes et al., 2019, Lansu et al., 2020, Jansen et al., 2022). For our initial testing, and 

given the limited amount of data available for this study, we use the following simple multivariate regression instead of a more 110 

complex machine learning algorithm to estimate the instantaneous evapotranspiration:   

ETphone =  𝛼𝛼𝐼𝐼 × 𝐼𝐼× cosϕ + 𝛼𝛼RH × RH + 𝛼𝛼𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑎𝑎 + 𝛼𝛼𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑠𝑠 + 𝛼𝛼𝑤𝑤𝑤𝑤 × 𝑤𝑤𝑠𝑠 + 𝑐𝑐     (1) 

This model calculates the individual contribution of each variable to the total observed ET after calibration of the α coefficients 

and intercept c.. E.g., when αI > 0, the illuminance will add to the ET budget. If the coefficient is negative, the component 

(coefficient multiplied with variable) will be subtracted from the ET budget. For the local application and validation in this 115 

study, the coefficients are calibrated such that the calculated ET resembles observed ET best. For a more general application, 

more complex ML models trained with a more extensive dataset or integration of EO models with smartphone data should be 

considered, though it should be noted that the performance of EO models for ET estimations is not necessarily high when 

evaluated at smaller local scales that are the focus of this study (e.g. Pardo et al., 2014, Cheng et al., 2021). From the collected 

data, two thirds were randomly selected to calibrate the regression models for ETphone, while the remainder were used to validate 120 

the obtained model. For ETphone, this procedure was repeated 2000 times, and validation error statistics were calculated as the 

mean over the resulting sample. For many practical applications, the interest would be on daily rather than instantaneous (or 

hourly) ET values. Various upscaling methods are available from the Earth observation literature to do this (see Jiang et al., 

2021), but these are not used in this study since our method is not limited to available satellite overpasses and multiple 

observations can be taken for a more robust estimation of the daily mean.  125 

 

3. Results 

Instantaneous observations from individual variables by smartphone sensors generally showed a good correlation with hourly 

values recorded at Buël. Air temperature (R2 = 0.88), relative humidity (R2 = 0.80) and air pressure (R2 =0.98) showed the 

highest correlations. Wind speed showed a satisfactory correlation (R2 = 0.57), likely because of its higher temporal variability, 130 

the low wind conditions during the field campaign, and the discrepancy between the instantaneous smartphone-based 

observations and the hourly average values at Buël. Global radiation could not be measured directly, but instead a linear model 

for its estimation was calibrated on the subset of the pitch-corrected illuminance values. Validation on the remaining part of 

the data revealed a high correlation (validation R2 = 0.97, see Figure 3a). Besides information on meteorological conditions 

and energy driving the land-atmosphere exchange, it is clear that the measurements also reflect key land-atmosphere exchange 135 

processes. This is illustrated by the high correlation between the smartphone surface-air temperature difference and the 

observed sensible heat flux (validation R2 = 0.90, see Figure 3b). 
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     a                 b  

 140 
Figure 3: Smartphone monitoring and calibration of radiation and heat fluxes. a) Impact of pitch-adjustment on estimation of global 
radiation from smartphone-measured illuminance. b) Relation between  sensible heat flux from eddy covariance and smartphone-
measured Ts−Ta.  

In a next step, we estimate the evapotranspiration as observed by lysimeter and eddy covariance by fitting Eq. 1 solely with 

smartphone observations. Validation of this model reveals a good performance, with relatively small mean RMSE values of 145 

0.102 mm/h (lysimeter) and 0.050 mm/h (eddy covariance) across the 2000-member ensembles. Figure 4a illustrates the 

performance for ensemble members that are representative for the mean performance. These values present the expected error 

of the proposed smartphone method when fitted on a small site-specific dataset. Interestingly, the errors are considerably 

smaller (eddy covariance) and only slightly larger (lysimeter) in comparison to the uncertainty arising from a direct comparison 

between the two state-of-the-art methods (Figure 4b). This suggests that even with limited site-specific calibration, the method 150 

might perform as well as other standard methods. 
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Figure 4: Illustration of ET prediction performance. a) Illustration of ETphone vs ET observed by lysimeter and eddy covariance. The 155 
2 models used for ETphone (for lysimeter and eddy covariance) were each selected out of a 2000-member ensemble because of their 
RMSE values being close to the mean across all sets, and thus represent an average model outcome. Shown RMSE values are for 
validation points only, whereas the graph shows all data. b) Relation between ET as observed by lysimeter and eddy covariance as 
reference. 

In the MLR model, it was found that most observations contributed information to ETphone (Figure 5). Surface temperature, air 160 

temperature, and relative humidity were found to contribute most information, while wind speed was found to play a negligible 

role. It should be noted that wind was generally light during the field campaign, which might explain its small contribution. In 

spite of the site being well-known for having an energy-limited evapotranspiration regime (Teuling et al., 2013, Michel & 

Seneviratne, 2022), and global or net radiation generally being a sufficient sole predictor for daily ET under these conditions 

(Maes et al., 2019), the illuminance term (as a proxy for global radiation) on average contributed less to the ET budget than 165 

temperature and humidity. This can be explained by the strong cross-correlations between states at or near the land surface and 

radiation, in particular at hourly timescales, combined with the relatively short length of the calibration data. It should be noted 

that the magnitude of the offset term (intercept c) is directly related to the units used for the variables in combination with the 

linearity of their relation to ET. In addition, the relative contribution of the different terms, in particular the temperature and 

RH terms, showed considerable spread. Nonetheless, this analysis shows that hourly ET estimation benefits from having 170 

observations of all relevant variables. 
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Figure 5: Distribution of the contributions to the ET budget in the MLR model fitted to subsets of the Büel data. Each distribution 
contains 2000 values (see Methods) of the matching terms in Eq. 1. Note that the distribution of values for the intercept c is not 
shown. 175 

 

4. Discussion and Outlook 

In this research, we presented the first results of a feasibility study aimed at monitoring evapotranspiration solely using 

smartphone-based sensors. Based on observations made during a short field campaign at a well-instrumented site in the Swiss 

pre-alps, we conclude that most meteorological variables relevant to ET estimation are monitored with good to sufficient 180 

accuracy by smartphone sensors. When a simple machine learning algorithm is fitted on a subset of the observations, validation 

on independent lysimeter and eddy covariance observations shows mean RMSE values in the range of 0.05–0.11 mm/h. This 

is comparable to the difference between these two state-of-the-art techniques during the field campaign (RMSE 0.08 mm/h), 

and similar to errors found in comparison between large-scale estimates and eddy covariance (RMSE 0.04–0.14 with median 

0.07 mm/h, see Bayat et al., 2024). Analysis of the machine learning algorithm outputs showed that for this short feasibility 185 

study, observations of radiation, temperature (both surface and air) and humidity all provided information, but wind less so. 

While these results show that smartphone ET estimation can give accurate values after local calibration, they do not provide 

information on the performance at other sites where no calibration data is available. 
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In order to investigate the transferability of the method to other sites, a second measurement campaign was conducted on 2 

days in April 2024 at the TERENO lysimeters located in the Rollesbroich hydrological observatory (Qu et al., 2016). Direct 190 

application of the model (Eq. 1) calibrated to subsets of the Büel observations as described earlier gave a satisfactory model 

performance with a median RMSE of around 0.10 mm/h for each of the six lysimeters. This performance however increased 

considerably after local calibration following the same procedure as used earlier for Büel, with median RMSE values in the 

range 0.06–0.07 mm/h. This shows that the general methodology works at different sites but best results are obtained after 

calibration. A closer look into the difference between the models calibrated on Büel vs. Rollesbroich data (Figure 6) provides 195 

an explanation for the poorer model performance. Besides warmer temperatures encountered at Büel, wind speeds were lower 

during the Rietholzbach campaign (order 0.5–1 m/s) than during the Rollesbroich campaign (4–5 m/s). As a result, the gradient 

between surface and air temperature was much smaller at Rollesbroich, and wind becomes a more important predictor in the 

model (Figure 6) at the expense of temperature (see the difference between the these constituents in Figures 5 and 6). This 

shows that for future application, a more complex model that is trained on a more complete range of weather conditions is 200 

needed. 

 

 
Figure 6: Distribution of the contributions to the ET budget in the MLR model fitted to subsets of the Rollesbroich campaign data. 

Each distribution contains 2000 values (see Methods) and is shown separately for each of the six lysimeters. Note the contribution 205 
of wind which is nearly absent in the Rietholzbach case (Fig. 5). 

 

The technology used in this study can be considered low cost at a current price tag of around 750 EUR/USD (650 for phone 

and 90 for WEATHERmeter). Most common smartphones can be equipped with an external thermal camera for around 230 
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EUR/USD. It should be noted that the sensors in these phones, in particular the light sensor and its lens, have not been 210 

optimized for the current application. Further future improvements should thus be possible. This is also true for the algorithm. 

The flux data from Büel used here reflects humid conditions over grassland as evidenced by a Bowen ratio of 0.22 based on 

average fluxes during the field campaign. In the future, a more complex machine learning algorithm should be trained with 

more data from a range of climatological, geographical, and land cover conditions. The current study was designed as a 

feasibility study, where ET was estimated in hindsight. Ideally, in future applications a dedicated app would receive input from 215 

the various sensors in real-time, and directly infer ET from those using a further optimized algorithm. Such algorithm could 

for instance also use additional information on albedo (Leeuw and Boss, 2018), time, location, and land cover that was not 

used in this study. We did not yet investigate how sensitive the results are to the choice for a particular sensor, and how this 

would affect the need for calibration. This will be the focus of future work. The same principle used here on smartphone data 

could potentially also be applied to a combination of a cheap weather station and IR temperature sensor for a more automated 220 

monitoring at a single location. However, this would require post-processing on the computer, while a dedicated smartphone 

app could do the same on the fly. 

The prospect to measure evapotranspiration using an affordable, handheld device marks a watershed moment in hydrology. 

For the first time, hydrologists might be able to measure evapotranspiration anywhere and anytime. We hope this first 

feasibility study will lead the community to embrace this opportunity, by developing and calibrating algorithms, possibly aided 225 

by the latest generation of precision lysimeters and online data, that will translate the observations into a real-time ET imagery. 

Such a new data sources would complement current ET monitoring by filling the existing blind-spot, thereby not only helping 

science but moreover directly supporting operational water management, spatial planning, and irrigation scheduling. With 

smartphone-based ET monitoring linked to crowdsourcing-based data acquisition, it will be possible to monitor future droughts 

and their impacts quickly, and in unprecedented detail. 230 
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Code and data availability 

Smartphone observations and matching observations at Rietholzbach/Büel and Rollesbroich are available at 

https://www.hydroshare.org/resource/4f88a4b06bc846a1b948d06fe9145223/. The Python scripts used for analysis and 

creating the figures are available at https://github.com/JasperLammers99/Handheld_Evapotranspiration.  235 
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