Preprints
https://doi.org/10.5194/egusphere-2023-2936
https://doi.org/10.5194/egusphere-2023-2936
18 Jan 2024
 | 18 Jan 2024

The ddeq Python library for point source quantification from remote sensing images (Version 1.0)

Gerrit Kuhlmann, Erik F. M. Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner

Abstract. Anthropogenic emissions from “hotspots”, i.e. cites, power plants and industrial facilities, can be determined from remote sensing images obtained from airborne and space-based imaging spectrometers. In this paper, we present a Python library for data-driven emission quantification (ddeq) that implements various computationally light methods such as Gaussian plume inversion, cross sectional flux method, integrated mass enhancement method and divergence method. The library provides a shared interface for data input and output as well as tools for pre- and post-processing of data. The shared interface makes it possible to easily compare and benchmark the different methods. The paper describes the theoretical basis of the different emission quantification methods and their implementation in the ddeq library. The application of the methods is demonstrated using Jupyter Notebooks included in the library, for example, for NO2 images from the Sentinel-5P/TROPOMI satellite and for synthetic CO2 and NO2 images from the Copernicus CO2 Monitoring (CO2M) satellite constellation. The library can be easily extended for new datasets and methods, providing a powerful community tool for users and developers interested in emission monitoring using remote sensing images.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Jun 2024
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024,https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We present a Python software library for data-driven emission quantification (ddeq). It can be...
Share