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Abstract. Atmospheric emissions from anthropogenic “hotspots”, i.e. cites, power plants and industrial facilities, can be deter-

mined from remote sensing images obtained from airborne and space-based imaging spectrometers. In this paper, we present

a Python library for data-driven emission quantification (ddeq) that implements various computationally light methods such

as Gaussian plume inversion, cross sectional flux method, integrated mass enhancement method and divergence method. The

library provides a shared interface for data input and output as well as tools for pre- and post-processing of data. The shared5

interface makes it possible to easily compare and benchmark the different methods. The paper describes the theoretical basis of

the different emission quantification methods and their implementation in the ddeq library. The application of the methods is

demonstrated using Jupyter Notebooks included in the library, for example, for NO2 images from the Sentinel-5P/TROPOMI

satellite and for synthetic CO2 and NO2 images from the Copernicus CO2 Monitoring (CO2M) satellite constellation. The

library can be easily extended for new datasets and methods, providing a powerful community tool for users and developers10

interested in emission monitoring using remote sensing images.

1 Introduction

The majority of anthropogenic emissions of air pollutants and greenhouse gases is confined to localized sources such as cities,

power plants and industrial facilities (e.g., Crippa et al., 2022). The emissions of these “hotspots” can be determined from

the atmospheric plumes of trace gas column densities in remote sensing images. Trace gases of interest are nitrogen dioxide15

(NOx = NO2 + NO), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) and others. Numerous methods have been

developed in recent years to quantify the emissions from remote sensing images by matching observations to simulated plumes

(e.g., Bovensmann et al., 2010; Nassar et al., 2017; Broquet et al., 2018; Ye et al., 2020; Lei et al., 2021; Kaminski et al.,

2022), applying the principle of mass conservation to individual or temporally averaged images (e.g., Beirle et al., 2011; de

Foy et al., 2015; Varon et al., 2018; Reuter et al., 2019; Zheng et al., 2020; Kuhlmann et al., 2021; Leguijt et al., 2023), or20
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using machine-learning models trained with synthetic observations (e.g., Jongaramrungruang et al., 2022; Joyce et al., 2023;

Dumont Le Brazidec et al., 2024).

Remotely sensed trace gas images are available from space-based imaging spectrometers such as the Tropospheric Monitor-

ing Instrument (TROPOMI, Veefkind et al., 2012) and the Orbiting Carbon Observatory-3 (OCO-3, Eldering et al., 2019), as

well as from high-resolution point source imagers such as GHGSat, several multispectral land imaging sensors (e.g., Sentinel-25

2), and from the upcoming generation of missions in polar and geostationary orbits (i.e. CO2M, GEMS, GOSAT-GW, Sentinel-

4 and -5, TEMPO and others). In addition, airborne imaging spectrometers can be used to map emission plumes at high spatial

resolution (e.g., Thorpe et al., 2017; Tack et al., 2019; Fujinawa et al., 2021). An example of the plumes that can be visible

from a city or power plant is shown in Figure 1. This example is from the synthetic SMARTCARB dataset (Kuhlmann et al.,

2019) generated for the Copernicus CO2 Monitoring (CO2M) satellite constellation planned for launch in 2026 (ESA Earth30

and Mission Science Division, 2020).

Measurement-based emissions monitoring systems are currently being developed to support global efforts on reducing green-

house gas emissions to achieve the goals of the Paris Agreement for Climate Change. One such system is the European CO2

Monitoring and Verification Support (CO2MVS) capacity that will be implemented as part of the European Copernicus pro-

gramme (Janssens-Maenhout et al., 2020). A prototype system of the European CO2MVS capacity is currently developed in35

the CoCO2 project (https://coco2-project.eu/). Since one goal of CO2MVS is the global monitoring of emission hotspots, sev-

eral emission quantification methods were implemented and benchmarked in the CoCO2 project using synthetic CO2M CO2

and NO2 observations and Sentinel-5P/TROPOMI NO2 observations (cf., Hakkarainen et al., 2023; Santaren et al., 2024). As

the new generation of satellites will provide a large number of hotspot images (e.g., Kuhlmann et al., 2021; Wang et al., 2020),

it is foreseen that computationally lightweight methods will be needed to process the large amount of data in the operational40

CO2MVS system. Such methods will have to make optimal use of the information contained in the images without requiring

expensive plume simulations with a high-resolution atmospheric transport model.

This paper describes the Python library for data-driven emission quantification (ddeq; Version 1.0), developed in the CoCO2

project as a shared library for the implementation of various lightweight approaches. Although the various methods differ in

many aspects, they share many pre- and post-processing steps including data input and output. The common interface thus45

makes ddeq a powerful tool for comparing and benchmarking different methods but also for implementing new approaches.

The ddeq library was originally developed in the SMARTCARB project for detecting and quantifying CO2 and NOx emissions

in synthetic CO2 and NO2 images of the CO2M mission (Kuhlmann et al., 2019, 2020a, 2021), but it has also been used for

quantifying NOx emissions with the airborne APEX imaging spectrometer (Kuhlmann et al., 2022). Whereas ddeq is designed

for the lightweight emission quantification of hotspots from remotely sensed images, a similar community-driven library exists50

for regional and global emission estimation with atmospheric model runs through the Community Inversion Framework (CIF,

Berchet et al., 2021). The ddeq version presented here does not include machine-learning models, which were also considered

in the CoCO2 project (Dumont Le Brazidec et al., 2023, 2024). ddeq has been used in the CoCO2 project for benchmarking the

different methods using synthetic CO2M observations (Santaren et al., 2024) and TROPOMI NO2 observations (Hakkarainen

et al., 2023).55
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Figure 1. Example of synthetic CO2M (a) CO2 and (b) NO2 satellite images from the SMARTCARB dataset. The images show the emission

plumes of the city of Berlin and the coal-fired power plant near Jänschwalde at 2 km resolution. Pixels with cloud fractions larger than 1%

for CO2 and 30% for NO2 are shown in white and regions outside the satellite swath are shown in gray. The triangular marker indicates the

wind direction at the source. The yellow polygons delineate the subregions containing the plumes. The smaller polygons show the regions

upstream of the source.

The paper has two parts. In the first part, we describe the general principles of lightweight emission quantification and

describe the different methods. In the second part, we describe the common framework and interfaces provided by ddeq and

details of the implementation of the different methods. The application of the ddeq library to synthetic CO2M observations

for estimating CO2 and NOx emissions and to TROPOMI observations for estimating NOx emissions is showcased in several

Jupyter Notebooks available in the supplement.60

2 Theoretical basis

Two families of lightweight approaches exists for emission quantification of hotspots. The first family quantifies emissions

from “instantaneous plumes” obtained from single remote sensing images. The second family requires averaging over multi-

ple images taken at different times before quantifying the emissions. The ddeq library currently implements four methods for

emission estimation, partly in different flavours. The emission quantification methods are (1) Gaussian plume inversion, (2)65

cross-sectional flux method, (3) integrated mass enhancement method and (4) divergence method. All methods can be applied

to single images, although the divergence method typically requires averaging over many images. In the following, the the-

oretical basis for plume detection, background estimation, effective wind speeds and for the four quantification methods are

summarized briefly. We also briefly cover the conversion of NO2 to NOx observations and the estimation of annual emissions

from individual estimates.70
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Table 1. Symbols used in equations.

Symbol Description Units

A pixel area m2

D decay function 1

E emission kgm−2 s−1

F gas flux kg s−1

G Gaussian plume model kgm−2

H Heaviside step function 1

J cost function -

K eddy diffusion coefficient m2 s−1

L plume length m

M integrated mass enhancement kg

Q emission rate kg s−1

S sink term kgm−2 s−1

V vertical column density kgm−2

Vbg background vertical column density kgm−2

b offset of linear background kgm−3

c decay correction factor 1

f NO2 to NOx conversion factor 1

g Gaussian curve kgm−2

m slope of linear background kgm−2

p 2D Gaussian surface kgm−2 s−1

q line density kgm−1

r correlation 1

t residence time s

u wind speed ms−1

x along-plume coordinate m

y across-plume coordinate m

zq detection threshold 1

κ coefficient in Gaussian plume model 1

ρ trace gas concentration kgm−3

µ center shift of Gaussian curve m

σ standard width of Gaussian curve m

σV random noise of V -

τ decay time s

P plume pixels -
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2.1 Identification of the plume region

A critical first step required by most methods is the identification of a subregion within the image (described by a polygon)

where the emission quantification method is applied (see Fig. 1). The subregion contains the plume, i.e. the pixels where trace

gas columns are enhanced due to emissions from the source of interest and a fraction of the background field. This first step not

only identifies the plume location, but also assigns the source location and computes a local coordinate system defining along-75

and across-plume distances.

Broadly speaking two different approaches for defining the subregion are available, both have been implemented in ddeq.

The first approach identifies the plumes inside the remote sensing images using an image segmentation algorithm. For example,

if thresholding is used, pixels are assigned to the plume if their signal-to-noise ratio (SNR) exceeds a threshold zq

SNR =
V −Vbg

σV
≥ zq (1)80

where V and Vbg are the total and background vertical column density and σV is the local noise in the image (Varon et al., 2018;

Kuhlmann et al., 2019). The determination of the background, i.e. the vertical column density that would be expected without

the presence of the source, is described in the next section. More complex segmentation algorithms apply feature detection

using, for example, convolutional neural networks (Finch et al., 2022; Dumont Le Brazidec et al., 2023). The detected plumes

can be assigned to one or more sources by checking their overlap with a known list of source locations, for example, from an85

emission inventory. The boolean mask obtained from the image segmentation can be converted to the polygons shown in Fig.

1 by computing the bounding boxes in the local coordinate system.

The second approach determines the subregion based on the source location and the wind field available from, for example,

a meteorological reanalysis product. This means that the remote sensing images are not used. In the simplest case, the wind

vector is taken at the source location and the plume is assumed to be located downstream. It is then possible to draw a90

rectangular polygon with the along- and across-wind direction. The approach can be extended to simulate the plume location

or an ensemble of plume locations with an atmospheric transport model, which can provide a better estimate of the plume

location especially further downstream of the source. However, this can get computationally quite expensive and does not

qualify as lightweight method anymore.

For each detected plume, a natural coordinate system can be established with along-plume coordinate x and across-plume95

coordinate y. The coordinates can either be computed as distance along and perpendicular to the wind vector. For a curved

plume, the coordinates can be computed as arc length along, and distance from, a two-dimensional curve fitted to the detected

plume (Figure 1 and Kuhlmann et al., 2020a, for details).

2.2 Background estimation

To estimate the emission rate of a source, we are interested in the enhancement above the background:100

Ve(x,y) = V (x,y)−Vbg(x,y). (2)
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A common approach for estimating the background is applying a low-pass filter (e.g., a median filter) or a normalized convolu-

tion after masking enhancements assuming a spatially smooth background field. Alternatively, the background can be estimated

from the pixels upstream of the source. Another approach is explicitly fitting a background term in the emission quantification

method, which is possible with the Gaussian plume inversion and the cross-sectional flux method.105

2.3 Effective wind speed

Wind speed and direction describe the transport of the trace gas in the atmosphere and are therefore an important input for all

emission quantification methods. For methods that are applied to instantaneous images, the wind direction can be estimated

from the plume direction. The wind speed needs to be taken from another source such as ECMWF’s ERA5 reanalysis product

(Hersbach et al., 2018).110

To obtain an unbiased estimate of the emissions, it is necessary to calculate the effective wind speed that corresponds to the

mean transport speed of the plume. The effective wind speed is the vertically averaged wind speed weighted by the vertical

profile of the trace gas concentration. It can be calculated as

u(x,y) =

∫ zT
0

ρe(x,y,z)u(x,y,z)dz∫ zT
0

ρe(x,y,z)dz
(3)

where ρe(x,y,z) is the concentration of the trace gas enhancement, u(x,y,z) is the along-plume wind speed and zT is a height115

above the plume.

Since the vertical profile ρe(z) is usually not known, a common approach to approximate the effective wind speed is by

averaging the lowest layers of a reanalysis product (e.g., Fioletov et al., 2015, uses the mean of the three lowest ERA-5 layers).

Alternatively, plume rise calculations can be used to estimate the height and spread of the trace gas at the source location. The

effective emission height can be significantly higher than the geometric height of a stack due to the momentum and buoyancy120

of the flue gas. Plume rise is generally influenced by stack geometry (height and diameter), flue gas properties (temperature,

humidity, exit velocity), and meteorological conditions (wind speed, atmospheric stability) (Bieser et al., 2011; Brunner et al.,

2019). In the case of a well-mixed atmospheric boundary layer, the exhaust plume will become uniformly mixed throughout

the depth of the boundary layer with increasing distance from the source. Therefore, a pressure-weighted mean wind speed in

the boundary layer may be sufficient. This approach could also be viable for emissions from a city.125

Light-weight approaches use a single value such as the wind speed at the source location or averaged over the plume. It is

important to note that the effective wind speed also has a temporal component, even in an instantaneous image, as the trace gas

at the end of long plumes can be several hours old.

2.4 Emission quantification methods

Figure 2 illustrates the application of Gaussian plume inversion, cross-sectional flux, integrated mass enhancement and diver-130

gence method. In each panel, the pseudo-color map shows the NO2 column densities observed by an imaging spectrometer with

5 km resolution for an emission plume of a source located at the origin. The plume was modelled with a Gaussian plume model

with an emission rate of 1 kg s−1 (≈ 32 kt NO2 a−1), a chemical lifetime of NO2 of 6 hours, and a wind speed of 5 m s−1.

6



25 0 25 50 75 100 125 150
x [km]

40

20

0

20

40

y 
[k

m
]

(a) Gaussian plume inversion

25 0 25 50 75 100 125 150
x [km]

40

20

0

20

40

y 
[k

m
]

y2

y1 x1 x2

(b) Cross-sectional flux method

25 0 25 50 75 100 125 150
x [km]

40

20

0

20

40

y 
[k

m
]

y2

y1x1 x2

(c) Integrated mass enhancement method

25 0 25 50 75 100 125 150
x [km]

40

20

0

20

40

y 
[k

m
]

(d) Divergence method

0

50

100

150

200

NO
2 c

ol
um

n 
[µ

m
ol

 m
2 ]

0

50

100

150

200

NO
2 c

ol
um

n 
[µ

m
ol

 m
2 ]

0

50

100

150

200

NO
2 c

ol
um

n 
[µ

m
ol

 m
2 ]

0

50

100

150

200

NO
2 c

ol
um

n 
[µ

m
ol

 m
2 ]

Figure 2. Sketch showing the application of the different lightweight methods to an emission plume. Each panel shows an NO2 emission

plume simulated by a Gaussian plume model (Q = 1 kg s−1, u = 5ms−1) including exponential decay (τ = 6 h).

The white crosses mark pixels where the NO2 column is larger than 50µmol m−2. In the following, the theoretical basis for

these methods is described for determining the emissions of a chemically inert gas (e.g., CO2 and CH4) and an exponentially135

decaying gas (e.g. NO2). The conversion of NO2 to NOx is discussed in Section 2.5.

2.4.1 Gaussian plume inversion

In this method a vertically integrated Gaussian plume model G is fitted to the observed column densities V (e.g., Bovensmann

et al., 2010; Nassar et al., 2017). The Gaussian plume model can be written as

G(x,y) =
QH(x)√
2πuσ(x)

exp

(
− y2

2σ(x)2

)
+Vbg(x,y) (4)140

with emission rate Q, wind speed u and background column Vbg(x,y). H(x) is the Heaviside step function. x and y are the

along- and across-plume coordinates. The dispersion in the across-plume direction is modeled by the standard width

σ(x) =

√
2Kxκ

u
(5)

with eddy diffusion coefficient K (in m2 s−1). The additional exponent κ accounts for possible changes in the dispersion rate

along the plume depending on meteorological conditions. This makes it possible to modify the standard expression using κ= 1145

with a power law of the form σ(x) = axb, which has also been used in literature (e.g., Krings et al., 2013). An example of the

Gaussian plume is shown by the contour lines in Fig. 2a.
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A least squares method can be used to obtain the optimal values for Q, K, Vbg and κ as well as their uncertainties by

minimizing the following cost function

J(Q,K,Vbg,κ) = ∥Vi,j −G(xi,yi)∥22 (6)150

where Vi,j is the observed column density for the pixel with center coordinates (xi,yi).

Equation (4) can be used to approximate the emission plumes for species with long lifetimes such CO2, CO and CH4. For

species with short lifetimes, the Gaussian plume model needs to be multiplied with a decay term

D(x,τ) =H(x)exp
(
− x

uτ

)
(7)

where the lifetime τ is an additional fitting parameter. In the case of NO2, the lifetime is typically about 4 hours.155

The Gaussian plume model is valid for a point source, where the source area is smaller than the pixel size. For sources such

as cities with dimensions larger than the pixel size, the flux will slowly increase across the source area. An approach to account

for this effect is to describe the emissions from the city by an emission map p(x,y) and the change in flux in along-plume

direction as the convolution of a map and a decay term

Ga(x,y) =G(x,y)

+∞∫
−∞

D(x′, τ)p(x−x′,y)dx′ (8)160

The emission map can take the form of uniform surface within city boundaries or a 2D Gaussian surface p(x,y) with the form

p(x,y) =
1

2πσxσy

√
1− r2

· exp
(
− (x−x0)

2

2σ2
x(1− r2)

− (y− y0)
2

2σ2
y(1− r2)

+
r(x−x0)(y− y0)

σxσy(1− r2)

)
(9)

where (x0,y0) is the center position, (σx, σy) are standard widths and r is the correlation. These parameters can be included in

the least square method as additional fitting parameters.

2.4.2 Cross sectional flux method165

The cross-sectional flux method applies mass conservation by computing the gas flux in the plume (F , in kg s−1) downwind

of the source from wind speed u and line density q (e.g. Varon et al., 2018; Reuter et al., 2019; Kuhlmann et al., 2021), i.e.

F = u · q. (10)

For a non-decaying gas, the flux is identical to the emission rate Q under the assumption of steady-state conditions and that

turbulent mixing is negligible compared to advective transport in along-plume direction. For a decaying gas, the flux decreases170

downstream of the source in along plume distance x. In this case, the emission rate can be computed by compensating the flux

for the along-plume decay:

Q=
F (x)

D(x,τ)
. (11)

8



The line density is obtained by integrating the column enhancements in across-plume direction from y1 to y2 at distance x:

q(x) =

y2∫
y1

(V (x,y)−Vbg)dy (12)175

where the interval [y1,y2] needs to be sufficiently large to contain the full plume extent.

The line density can simply be obtained by integrating over the enhancements for all pixels within a rectangle (a polygon

in case of a curved plume) delimited by [x1,x2] and [y1,y2] (see Fig. 2b). However, a disadvantage of this approach is that

the background needs to be estimated first and subtracted from the observed vertical columns. Another disadvantage is that

missing pixels (e.g. due to clouds) need to be interpolated to obtain the correct line density. An often used alternative approach180

is therefore fitting a Gaussian curve to all pixels within the rectangle

g(y) =
q√
2πσ

exp

(
− (y−µ)2

2σ2

)
+my+ b (13)

with standard width σ and center position µ to the observations. The background is approximated here by a linear function with

slope m and intercept b. The Gaussian curve has the advantage that it automatically interpolates missing values. Furthermore,

assuming that different trace gases share the same distribution in lateral direction, the method can be expanded to use the185

standard width and center position estimated for one trace gas directly when fitting the Gaussian function for another gas. This

is particularly attractive for the combination of NO2 and CO2 observations from the future CO2M mission. Since NO2 can

be measured with higher precision than CO2 with current remote sensing instruments, images of NO2 can provide a much

stronger constraint on the width and position of the plume compared to the much noisier images of CO2 (e.g., Reuter et al.,

2019).190

To increase the accuracy of the estimate, fluxes can be computed for multiple polygons downstream of the source. For a

non-decaying gas, the estimated fluxes can simply be averaged. For a decaying gas, however, the emission Q can be obtained

by additionally fitting the lifetime τ to the estimated fluxes. For point sources, where the pixel size is larger than the source

area, a step function is assumed in the decay term, i.e. the flux increases stepwise from zero to the emission rate Q at the source

location:195

Fp(x,τ) =Q ·D(x,τ). (14)

For sources such as cities it is necessary to account for the effect of the source area by describing the emissions from the city,

for example, as a Gaussian curve and the change in flux in along-plume direction as the convolution of a Gaussian curve and a

decay term

Fa(x,τ,µa,σa) =Q

+∞∫
−∞

D(x′, τ)g(x−x′,µa,σa)dx
′ (15)200

where µa and σa are the location and standard width of the Gaussian curve describing the extent of the area source. This is

identical to the exponential-modified Gaussian method, but applied to a single image (Beirle et al., 2011; de Foy et al., 2015).
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2.4.3 Integrated mass enhancement

The integrated mass enhancement approach computes the emission rate Q from the integrated total mass enhancement M of

the detectable plume Pd and a residence time t (Frankenberg et al., 2016; Varon et al., 2018). The method can be derived by205

integrating the Gaussian plume model after subtracting the background (Eq. 4) over a large polygon up to distance x2 (see

Fig. 2c):

M =

y2∫
y1

x2∫
x1

(G(x,y)−Vbg(x,y)) dxdy. (16)

If the integration interval in across-plume direction is sufficiently large to contain the full plume, and 0< x1 < x2, we obtain

M =

x2∫
x1

Q

u
dx (17)210

or

Q=
u

L
M (18)

where u is the effective wind speed and L= x2 −x1 is the length of the detectable plume. Note that the derivation here is

different from Varon et al. (2018), who integrated over the detectable plume only and computed L as the length scale defined

as the square root of the plume area.215

In practise, M can be computed as

M =
∑

(i,j)∈Pa

(Vi,j −Vbg) ·Ai,j (19)

where Ai,j are the pixel areas and the integration area Pa is obtained by sufficiently expanding the detected plume in across-

wind direction to include also pixels with enhancements below the detection limit.

To apply the integrated mass enhancement method to a decaying gas, the decay term needs to be included in the integral,220

i.e.

M =

y2∫
y1

x2∫
x1

G(x,y) ·D(x)dxdy. (20)

As a result, the emission rate Q can be computed as

Q=
1

c

u

L
M (21)

where the correction factor c corrects for the gas decay in along-plume direction:225

c=
uτ

L

(
exp

(
−x1

uτ

)
− exp

(
−x2

uτ

))
. (22)
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2.4.4 Divergence method

The divergence method was introduced by Beirle et al. (2011, 2019) for estimating NOx emissions from TROPOMI NO2

satellite observations. In the CoCO2 project, the method was adapted to estimate CO2 emissions (Hakkarainen et al., 2022).

The method is generally applied to a sequence of satellite images rather than a single image.230

The divergence method is based on the continuity equation (Jacob, 1999; Koene et al., 2023) at steady state. According to

this, the divergence of the flux field F corresponds to the difference between emissions E and sinks S:

∇ ·F = E−S. (23)

The flux F is defined as

F =

Fx

Fy

=

V ·u
V · v

 (24)235

where V is the vertical column density, and u and v are the eastward and northward components of the plume transport

speed, respectively, which corresponds to the horizontal wind components weighted by the vertical distribution of the plume

concentrations (Koene et al., 2023).

The NOx sink can be calculated from the NO2 columns as S = fV
τ , where τ is the NOx lifetime and f is the constant

NOx-to-NO2 ratio. Assumptions about lifetime and NOx-to-NO2 ratio are discussed in the next section.240

In case of gases like CO2 with lifetimes much longer than the characteristic timescales of a plume (i.e. much longer than

a few hours), the sink term can be neglected. For long-lived gases, however, it is critical to first subtract the atmospheric

background before computing the divergence since the flux is not linear with the column V due to the vertical change of wind

speed (e.g., Hakkarainen et al., 2016).

To obtain the hotspot emissions Q from the emission map (E = S+∇ ·F ), a peak-fitting algorithm can be applied that fits245

a 2D Gaussian surface with a background at each source location (x0, y0):

p(x,y) =
Q

2πσxσy

√
1− r2

· exp
(
− (x−x0)

2

2σ2
x(1− r2)

− (y− y0)
2

2σ2
y(1− r2)

+
r(x−x0)(y− y0)

σxσy(1− r2)

)
+ pBG (25)

with standard widths (σx, σy), correlation r and a constant background in the divergence flux map pBG.

2.5 NO2 to NOx conversion

Many studies estimate emissions from NO2 observations. However, NO2 is emitted primarily as nitrogen monoxide (NO) and250

rapidly converted to NO2 in the atmosphere. Emissions are therefore reported as nitrogen oxides (NOx = NO2 + NO) in NO2

equivalents (kgNO2 s
−1). Since imaging remote sensing instruments only measure NO2 column densities, it is necessary to

convert NO2 to NOx using a NO2 to NOx ratio fV representative of vertical columns

VNOx
(x,y) = fV (x,y) ·VNO2

(x,y) (26)
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or a ratio fQ for the estimated emissions255

QNOx
= fQ ·QNO2

. (27)

If the conversion factor fV is constant in space, fV and fQ are identical. However, the assumption of spatial (and temporal) ho-

mogeneity is generally not true for emission plumes and more realistic models are currently being discussed (e.g., Hakkarainen

et al., 2023; Meier et al., 2024).

2.6 Estimating annual emissions260

Except for the divergence method, the methods described thus far allow us to quantify emissions from a single satellite image.

To make statements about emissions over longer periods of time, and to take advantage of the detection of a single source in

multiple satellite images, one can compute a temporal average of the various computed emissions. Since the temporal coverage

may be sparse and unevenly distributed over the year due to cloud cover and other factors, it may be useful to fill the gaps

by making assumptions about the temporal variability. One possibility is to fit a seasonal cycle to the individual estimates265

using low-order spline to approximate the time-varying emissions and to compute the annual mean emissions by integrating

over the cycle (e.g., Kuhlmann et al., 2021). Extrapolating from a few single observations to an annual average is associated

with significant uncertainties unless additional information on the true temporal variability is available (Hill and Nassar, 2019;

Nassar et al., 2022). A further complication is the fact that satellite observations are often performed at the same time of the

day providing almost no information on diurnal variability.270

3 The ddeq Python library

In this paper, we describe Version 1.0 of the library, which is provided in the supplement. ddeq is an open source library,

whose latest release is available on the Python Package Index (PyPI; https://pypi.org/project/ddeq/). The issue tracker and the

development version of the library are available on the project’s website: https://gitlab.com/empa503/remote-sensing/ddeq.

How to install ddeq is described in Appendix A. The documentation of the library is available in the supplement and also275

published on "Read the Docs" (https://ddeq.readthedocs.io/).

3.1 General framework

The library consists of four main components as shown in Figure 3. (1) The data input component provides functions for reading

remote sensing images (e.g., S5P/TROPOMI observations and synthetic CO2M observations), hotspot locations (e.g., CoCO2

point source database, Guevara et al. (2024)) and (effective) wind fields (e.g., ERA-5 reanalysis product). (2) The second280

component provides pre-processing of the data, which includes plume detection, conversion between coordinate systems, unit

conversions, and estimation of the background field. (3) To quantify the emissions, five modules are provided implementing

a Gaussian plume inversion (hereafter abbreviated as GP, in ddeq.gauss), general and light cross-sectional flux method

(hereafter CSF, in ddeq.csf and LCSF in ddeq.lcsf), integrated mass enhancement (hereafter IME, in ddeq.ime) and
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Figure 3. Data flow diagram illustrating the interactions between the different components in ddeq.

divergence method (hereafter DIV, in ddeq.div). (4) Finally, the library provides functions for post-processing, which includes285

methods for estimating annual emissions from individual estimates, for converting NO2 to NOx emissions, for visualizing the

results and for writing data output in standardized NetCDF format.

Figure 4 shows a simple code example demonstrating the individual steps required for estimating the CO2 and NOx emis-

sions of the Jänschwalde power plant in Germany. The Jupyter Notebook with the full example is part of the ddeq library

(‘notebooks/tutorial-introduction-to-ddeq.ipynb’). First, the data input step corresponds to reading the location of sources, syn-290

thetic CO2M data and ERA-5 wind fields. ERA-5 file were downloaded and prepared by the ddeq library (cf. Section 3.2).

Second, a plume detection algorithm is used to locate the plume in the satellite image. A center curve is fitted to the data and

natural coordinates are computed for the detected plume of each source. Third, the data are prepared for emission quantification

by estimating and subtracting the background field and converting the CO2 and NO2 columns to kgm−2. Fourth, CO2 and

NOx emissions are estimated using the cross-sectional flux method as an example. The estimated NO2 emissions are converted295

to NOx using a conversion factor of 1.32 (in kgNO2 s
−1). Finally, the results are saved as a NetCDF file and the data are

visualized (see Fig. 5). In the following, the different components are described in more details. The implementation details

are available in the documentation and the code itself in the supplement.

3.2 Data input

ddeq requires that the location of sources used is known prior to estimating the emissions. The location and type of sources300

is therefore an important input for plume detection and emission quantification. ddeq makes extensive use of the xarray

package (Hoyer and Hamman, 2017) for data handling to combine arrays with attributes. Sources are read from a comma-

separated values (CSV) file into an ‘xarray.Dataset’, which contains the source names (‘source’), longitudes (‘lon_o’), lati-

tudes (‘lat_o’), labels for visualization (‘label’) and source types (‘type’, which is currently either ‘city’ or ‘power plant’).
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# ( 1 ) read h o t s p o t l o c a t i o n s , remote s e n s i n g data , winds

s o u r c e s = ddeq . misc . r e a d _ p o i n t _ s o u r c e s ( )

r s _ d a t a = ddeq . s m a r t c a r b . r e a d _ l e v e l 2 ( ' Sen t ine l_7_CO2_2015042311_o1670_l0483 . nc ' ,

c o 2 _ n o i s e _ l e v e l = ' low ' , n o 2 _ n o i s e _ l e v e l = ' h igh ' )

winds = ddeq . wind . r e a d _ w i n d _ a t _ s o u r c e s ( r s _ d a t a . t ime , s o u r c e s , p r o d u c t = 'ERA−5 ' )

# (2 a ) plume d e t e c t i o n from NO2 o b s e r v a t i o n s

r s _ d a t a = ddeq . dplume . d e t e c t _ p l u m e s ( r s _ d a t a , s o u r c e s , v a r i a b l e = 'NO2 ' , v a r i a b l e _ s t d = ' NO2_std ' ,

f i l t e r _ t y p e = ' g a u s s i a n ' , f i l t e r _ s i z e = ' 0 . 5 ' )

# (2 b ) c r e a t i o n o f plume−f o l l o w i n g c o o r d i n a t e s

r s _ d a t a , c u r v e s = ddeq . p lume_coords . c o m p u t e _ p l u m e _ l i n e _ a n d _ c o o r d s ( r s _ d a t a , r a d i u s =25 e3 )

# ( 3 ) background e s t i m a t i o n and u n i t c o n v e r s i o n

r s _ d a t a = ddeq . e m i s s i o n s . p r e p a r e _ d a t a ( r s _ d a t a , 'CO2 ' )

r s _ d a t a = ddeq . e m i s s i o n s . p r e p a r e _ d a t a ( r s _ d a t a , 'NO2 ' )

# ( 4 ) e m i s s i o n q u a n t i f i c a t i o n ( here : c r o s s − s e c t i o n a l f l u x method )

r e s u l t s = ddeq . c s f . e s t i m a t e _ e m i s s i o n s ( r s _ d a t a , winds , s o u r c e s , cu rves , method= ' g a u s s ' ,

g a s e s =[ 'CO2 ' , 'NO2 ' ] , f_model = 1 . 3 2 )

# ( 5 ) da ta o u t p u t and v i s u a l i z a t i o n

r e s u l t s . t o _ n e t c d f ( o u t p u t _ f i l e n a m e )

ddeq . v i s . p l o t _ c s f _ r e s u l t ( [ 'CO2 ' , 'NO2 ' ] , r s _ d a t a , winds , r e s u l t , cu rves , ' J a n s c h w a l d e ' )

Figure 4. Example of ddeq code for applying the CSF method to estimate CO2 and NOx emissions of the Jänschwalde power plants in

Germany. The full code is available in the library as a Jupyter Notebook (‘notebooks/tutorial-introduction-to-ddeq.ipynb’).

ddeq maintains a small list of sources as CSV file that primarily contains cities and power plants used in previous studies by305

the developers. User-defined files containing other sources can be prepared in the same format. The file can be read with the

‘ddeq.misc.read_point_sources’ function. In addition, ddeq can read the comprehensive CoCO2 global emission point source

database (Guevara et al., 2024) using ‘ddeq.coco2.read_ps_catalogue’. The catalogue is provided together with the library.

Remote sensing images are provided by airborne and space-based imaging spectrometers. ddeq handles images as ‘xar-

ray.Dataset’ with variables (i.e. ‘rs_data‘ in the example code) providing the trace gas columns and their uncertainties (e.g. ‘CO2’310

and ‘CO2_precision’) that need to have a ‘units’ attribute for automatic unit conversion and a ‘noise_level’ attribute that is used

as random uncertainty by the plume detection algorithm. In addition, the central longitude and latitude of the pixels need to

be provided as ‘lon’ and ‘lat’. If trace gases are provided as column-averaged mole fractions, surface pressure needs to be

provided as ‘psurf’ for unit conversion. Units are converted using the ucat Python library (https://pypi.org/project/ucat/).

ddeq provides functions for automatically downloading and cropping TROPOMI NO2 data for a given list of sources315

(‘ddeq.dowload_S5P’). Furthermore, the library can read the synthetic CO2M and Sentinel-5 data from the SMARTCARB
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Figure 5. Plot created by the ‘ddeq.vis.plot_csf_result’ command in the short example. Panel (a) and (b) show the CO2 and NO2 plume

from the Jänschwalde power plant in the synthetic CO2M images. Panel (c) shows the CO2 and NO2 columns in across-plume direction for

different along-plume distances with the two fitted Gaussian curves for computing the line densities. Panel (d) shows CO2 and NOx flux in

along-plume distance. The estimated CO2 and NOx emissions were 25.5Mta−1 and 29.2 kt a−1for this example.

dataset (Kuhlmann et al., 2020b) as well as the simulations from the library of plumes generated in the CoCO2 project (Koene

and Brunner, 2022). The synthetic datasets with known true emissions were used in the CoCO2 project for method development

and benchmarking (Santaren et al., 2024).

The final important input for emission quantification are wind fields, from which a representative transport speed of the320

trace gas within the plume is computed. ddeq provides functions for reading and downloading ERA-5 reanalysis fields as well

as reading wind fields from the SMARTCARB project (‘ddeq.era5’ and ‘ddeq.wind‘). Wind speed and direction are either

provided at the location of the source (‘ddeq.wind.read_at_sources’) or as two-dimensional field that can also be spatially in-

terpolated to the remote sensing image pixels, for example, for computing fluxes on Level-2 data (‘ddeq.read_field’). Transport

speeds can be computed by averaging the winds over a range of pressure levels, over the depth of the planet boundary layer, or325

as weighted averages weighted by a vertical profile such as a typical emission profile of power plants (Brunner et al., 2019).

The wind fields include the precision of the winds, which is currently hard-coded as 1ms−1, which is a rough estimate based

on values used in previous studies (e.g., Varon et al., 2018; Reuter et al., 2019; Kuhlmann et al., 2021) . Users are encouraged to

replace the uncertainty with a value suitable for their application and can also use their own wind data from other data sources.
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3.3 Pre-processing330

Data pre-processing includes a plume detection algorithm, conversion between coordinate systems, unit conversions and esti-

mation of the background field. Which pre-processing steps are required or optional depends on the individual method.

One main pre-processing step is an algorithm for identifying the (a priori) location of the emission plume in the remote

sensing image. ddeq implements an image segmentation algorithm for plume detection that is used as a pre-processing step by

the GP, CSF and IME methods. As an alternative, the LCSF method determines the (a priori) plume location from the source335

location and the wind vector, which is currently part of the method’s implementation. The divergence method does not require

information about plume locations.

The image segmentation algorithm is described in detail in Kuhlmann et al. (2019, 2021). In short, the algorithm generates a

boolean mask which is true where column densities are significantly enhanced above the background using Eq. (1). The signal

is computed as the difference between the local mean and the background field. The noise σV is computed from the random340

and systematic uncertainty of the vertical column densities and uncertainties in the background. The local mean is computed

by applying a uniform or a Gaussian filter to the image. The background field is computed using a median filter with a kernel

that is large enough to contain areas outside the plume. The threshold zq is computed from the probability q that the local mean

is larger than the background given the uncertainty σV based on a statistical z-test. In the boolean mask, neighboring pixels are

connected to regions and regions overlapping with known sources are labeled as plumes. The ‘ddeq.dplume.detected_plumes‘345

function is used for applying the algorithm to the remote sensing images.

To create the natural coordinate system and compute the plume length, a center curve can be fitted to the plume mask using

the ‘ddeq.plume_coords.compute_plume_line_and_coords’ function. The center curve is described by two parabolic polyno-

mials from which the along-plume coordinate x is computed as arc length from the source and the across-plume coordinate y

is computed as the distance from the center curve (see Kuhlmann et al., 2020a, for details). The plume length is the arc length350

from the source to the most distant detectable pixel. Prior to fitting the center curve, longitude and latitude are converted to

eastings and northings using a Cartesian coordinate reference system object from the ‘cartopy’ library (Met Office, 2010 -

2015). If pixel corners are provided by the input dataset, the function also computes the pixel size (in m2), which is required,

for example, by the integrated mass enhancement method.

Finally, ‘ddeq.emissions.prepare_data’ can be used to estimate the background field and convert all trace gas fields to mass355

columns (in kgm−2) using the ucat Python library (Kuhlmann, 2022). ddeq implements a function for estimating the back-

ground field from pixels surrounding a detected plume (‘ddeq.background.estimate’). The function masks all pixels where

the signal-to-noise ratio is larger than the threshold zq (using the results from the plume detection algorithm) and applies a

normalized convolution to estimate the background. Alternatively, the background can also be fitted directly by some emission

quantification methods.360
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3.4 Emission quantification

3.4.1 Overview

Methods that are applied to single images all use the same order of parameters to estimate the emissions of ‘sources’:

results = ddeq.{method}.estimate_emissions(

rs_data, winds, sources,365

[curves, gases, priors],

variable='{gas}_minus_estimated_background_mass',

[...]

)

where ‘{method}’ can be ‘gauss‘, ‘lcsf‘, ‘csf‘, ‘ime‘ for Gaussian plume inversion, (light) cross-sectional flux method and370

integrated mass enhancement method, respectively. Each method iterates over all sources provided by the ‘sources’ dataset

and estimates an emission if the source is inside the image. The method is applied to the variable in the remote sensing

dataset (‘rs_data’) given by the ‘variable’ parameter (currently not implemented for LCSF and DIV). The default string is

‘{gas}_minus_estimated_background_mass’, which is the default variable name created by the pre-processing after subtracting

the estimated background and converting to mass columns with units of kgm−2. It is possible to provide a list of up to two gases375

for the CSF, GP and LCSF method (e.g, ‘gases = [’NO2’, ’CO2’]’). In this case, either both gases are fitted simultaneously

(CSF) or after each other where the results from the first fit are used to constrain the second fit (GP and LCSF). The IME

method can only be applied to a single gas. The ‘gas’ placeholder in the ‘variable’ parameter will be replaced with the names

in ‘gases’.

The divergence method works on a series of remote sensing images and wind fields. The method therefore requires different380

inputs to read images and winds for a day on demand. The ‘div‘ method is called as

results = ddeq.div.estimate_emissions(

datasets,

wind_folder,

sources, ...385

)

where datasets is a class with a ‘read_date’ method that returns a list of remote sensing images for a given date and ‘wind_folder’

is the path to a folder containing wind fields, for example from the ERA-5 reanalysis or the COSMO atmospheric model, for

each day. Examples for the dataset are the ‘Level2Dataset’ class in the ‘smartcarb’ module or the ‘Level2TropomiDataset’ in

the ‘sats’ module.390

All methods return a results dataset, which is a ‘xarray.Dataset‘ with at least the variables ‘{gas}_estimated_emissions’

and ‘{gas}_estimated_emissions_precision’ with dimension ‘source’ that can be saved using the ‘to_netcdf’ method. The
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CSF method stores the results datasets using the ‘ddeq.misc.Result’ class, which inherits from ‘dict’ to handle dimensions of

different size between sources. It has the methods ‘to_netcdf’ and ‘from_file’ to write and read the results. The results will

be saved as NetCDF files using a group for each source. The implementation of the ‘ddeq.misc.Result’ class is necessary as395

NetCDF groups are currently not supported by xarray.

The total uncertainty in the estimated emissions depends on the uncertainty in the trace gas columns, wind speed and

background field. Additionally, all methods rely on simplifications and assumptions (e.g. steady-state conditions), which may

result in non-negligible uncertainties that are currently not accounted for in the ddeq library (see Santaren et al., 2024, for

details). To determine the total uncertainty, users are therefore encouraged to include such uncertainties, although they might400

be difficult to assess and vary from case to case.

3.4.2 Gaussian plume inversion (GP)

The Gaussian plume inversion method implemented in ddeq fits Eq. (4) to the detected plume. The fit parameters are Q, Vbg, K,

κ and coefficients of the center line. The wind speed is taken from the wind dataset, which, when using ‘ddeq.wind.read_at_sources’,

is the effective wind speed at the source.405

The plume center curve is described by a second order Bezier curve which has three control points (one centred at the

known plume source location, the other two are fitted parameters for the Gaussian curve), initialized along the curve as already

obtained in pre-processing. The reason for using a Bezier curve is that it behaves smoothly with respect to small changes in the

control points, which is required for stabilizing the least-squares fit. In case of a decaying gas, it is possible to fit a decay time

τ by setting the ‘fit_decay_times’ to true.410

The inversion consists of three simple Levenberg-Marquardt least-squares fitting steps. In the first fit, only the center curve,

Q and κ are optimized. In the second fit, K and τ are optimized and in the third fit, Q is optimized again. The implementation

of three fits decreases the computation time and avoids overfitting.

The initial (prior) parameters for Q and τ need to be provided as a dictionary for each source and trace gas:

priors = {415

source: {

'CO2': {'Q': 1000.0, 'tau': 1e10},

'NO2': {'Q': 1.0, 'tau': 4.0*3600},

...

}420

where Q is the source strength (in kg s−1) and tau is the decay time in seconds. Other parameters are set to typical values

in the ‘ddeq.gauss.generate_params’ function. If two gases are provided, the values fitted for the first gas are used as initial

conditions for the second gas (except for Q, which is reinitialized to the prior emission rate for that source). To constrain the

fit for the second gas, we only allow a small amount of deviation around the previously obtained Gaussian plume parameters

(see ‘ddeq.gauss.gaussian_plume_estimates’ for details).425
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The precision or random uncertainty of the Gaussian plume estimate is computed as

σQ =

√
σ2
Q,fit +σ2

u

(
Qfit

u

)2

(28)

where σQ,fit is the estimated standard deviation of the fitted emission data and the second term accounts for the uncertainty of

the wind speed as provided by the winds dataset (‘wind_speed_precision’).

Estimates are rejected when no fit is found, no standard deviation is estimated (i.e., if no good fit is possible), or when the430

emission rate is smaller than 0.1 times or larger than 1.9 times the prior expected emission rate (i.e. using Q±90% uncertainty).

These filters are currently fixed in the code. More flexible filters will be implemented in the future that are common to all

methods.

3.4.3 Cross sectional flux methods (CSF)

The CSF method is one of two different cross-sectional flux methods implemented in the library. The CSF method was orig-435

inally developed in the SMARTCARB study (Kuhlmann et al., 2020a, 2021). It computes line densities in multiple polygons

downstream of the source (see polygons in Fig. 5). Depending on the ‘model’ parameter, line densities are either obtained by

fitting a Gaussian curve (Eq. 13) using ‘model="gauss"’, or integrating pixels inside the polygon using ‘model="sub_areas"’.

The latter method divides the sub-polygons in across-plume direction, computes the mean for each sub-polygon, and then in-

tegrates the mean values for each sub-polygon. This is done to account for missing values in the image. For NO2 observations,440

the ‘f_model’ parameter can be provided to convert NO2 to NOx line densities.

The line densities are converted to fluxes using the provided wind speeds at the sources. Emissions are obtained by fitting

Eq. (14) or Eq. (15) to the fluxes. For a non-decaying gas, the decay function is replaced by a Heaviside step function, which

is 0 upstream and 1 downstream of the source. The uncertainty of the cross-sectional flux method is computed by propagation

of uncertainty from the single sounding precision that determines the uncertainty of each line density, which determines the445

uncertainty of the fitting parameters (Q and τ ). Note that we assume that the wind speed uncertainty is independent of the

number of pixels and the length of the plume.

To remove problematic cases, estimates are excluded if the angle between wind speed and center curve is larger than 45

degrees, which often indicates erroneous plume detection. Estimates are also rejected if more than 5 pixels are detected upwind

of the source.450

3.4.4 Light cross sectional flux method (LCSF)

The LCSF method is derived from the method originally developed by Zheng et al. (2020) to estimate the CO2 emissions of

Chinese cities and industrial areas from OCO-2 data. The method has then been adapted for routine and automatic estimation of

isolated clusters of CO2 emissions worldwide (Chevallier et al., 2020) and used to study the temporal variability of emissions

using several years of OCO-2 and OCO-3 data (Chevallier et al., 2022)455

Similar to the CSF method, the LCSF method computes line densities by interpolating the pixels contained within polygons

downstream of the source by a Gaussian function. The LCSF method uses the wind vector to construct a polygon that is 100 km
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wide in across-wind (perpendicular) direction and which extends downwind the source over a distance equal to the distance

travelled by the wind in one hour. A two-dimensional wind field read with ‘ddeq.wind.read_field’ is used to determine the wind

vector and for computing the wind speed used later for computing the flux. The ‘fit_backgrounds’ parameter can be used to460

determine if a linearly changing background should be added to the Gaussian curve. Additional parameters are passed using a

dictionary (‘lcs_params’). For example, a NO2 to NOx conversion factor can be defined using the ‘f_NOx_NO2’ key (default:

3.5).

The uncertainty in the estimates provided by the LCSF method is computed by propagation of the uncertainty of the ampli-

tude of the fitted Gaussian function. Several quality checks remove potentially unrealistic estimates: the fitting window should465

contain enough data pixels (default: 50 pixels) and the selected enhancements should have sufficient amplitude (i.e. larger than

the standard deviation of the values in the polygon), the uncertainty (1σ) of the fitted width of the Gaussian function should be

larger than 1 km and smaller than 5 km, and the estimated emissions should be larger than ‘min_est_emis’ (default: 0.0) and

smaller than ‘max_est_emis’ (default: infinity), which when calling ‘ddeq.lcsf.estimate_emissions‘ are either provided as input

parameters or as prior values similar to the implementation for the Gaussian plume inversion (i.e. using 0.1Q and 1.9Q).470

3.4.5 Integrated mass enhancement (IME)

To first identify the location of the plume, the IME method uses the plume detection algorithm with the same settings as for

the CSF and GP method. IME also requires the computation of the background field, the center line and the along- and across-

plume distance for each pixel. In the across-plume direction, the integration interval is obtained by either computing the convex

hull of the detected plume or by applying a binary dilation to the boolean mask of detected pixels. Both computations are carried475

out as part of the pre-processing inside the ‘ddeq.plume_coords.compute_plume_line_and_coords’ function. In along-plume

direction, the integration interval is defined by the ‘L_min’ and ‘L_max’ parameters. The default values are Lmin = 0 (i.e. the

source location) and Lmax being set to the arc length of the most distant pixel in the integration area minus 10 km.

Missing values are interpolated using normalized convolution. The plume is discarded when more than 25% of the pixels

in the detected plume have been obtained through this gap-filling. The effective wind speed is taken from the provided wind480

speeds at the source location. A decay time can be provided to compute the decay time correction term (Eq. 22).

The uncertainty of the emissions is calculated by propagation of uncertainty from the random uncertainty of the gas columns

and the wind speed.

3.4.6 Divergence method (DIV)

In ddeq, the divergence method is applied to each source individually. The remote sensing images are provided as a dataset485

class as described above where images are read for each date between ‘start_date’ and ‘end_date’. To access the wind fields,

the folder containing the wind files is provided and a filename pattern (e.g., ’ERA5-gnfra-%Y%m%dt%H00.nc’).

The divergence method is performed in two steps. In the first step, the average divergence ∇ ·F and sink S fields are

calculated from the vertical column densities and wind fields. In the second step, the peak fitting is applied to derive the

hotspot emissions.490
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In the first step, the trace gas fields can be denoised using a median filter and depending on the choice of the user, either the

local or the regional background is removed. Next, each pixel is associated with interpolated u and v wind components from

the provided wind fields and the vector field F is derived using second order accurate central differences as implemented in

‘numpy.gradient‘. All the data is gridded to a regular km-grid defined by the user by the input parameters ‘lon_km’, ‘lat_km’

and ‘grid_resol’ given in km. The divergence of the vector field is calculated before averaging over all available images. The495

computation of the divergence before averaging is preferred for remote sensing images with data gaps, for example, due to

clouds (Hakkarainen et al., 2022; Koene et al., 2023). For NOx, the sink term is calculated from the averaged vertical column

densities assuming a lifetime of 4 h.

In the second step, the peak fitting is performed by using a least squares fit between the averaged emission field E = S+∇·F
and the peak fitting function Eq. (25). The optimization is first done using the Nelder–Mead method from the scipy library. The500

uncertainty of the estimated emissions is obtained from the mismatch between emission field E and peak fitting function, i.e.

we assume that the chi-square of the fit is the number of degrees of freedom. ddeq also implements the adaptive Metropolis

algorithm (Haario et al., 2001) for sampling the posterior distribution (assuming non-informative prior) to obtain an optimized

estimate of the fitting parameters and their uncertainty.

3.5 Post-processing505

The post processing step provides functions for data visualization (‘ddeq.vis’) and for estimating annual emissions from indi-

vidual estimates (‘ddeq.timeseries’). In addition, it is possible to apply scaling factors to estimated emissions to convert NO2

to NOx emissions.

To convert NO2 to NOx emissions, it is possible to multiply all estimated NO2 emissions in the ‘results’ dataset, i.e. vari-

ables that start with "NO2" and have units of "kg s-1", to NOx emissions using the scalar f . The function ‘convert_NO2_510

to_NOx_emissions(results, f=1.32)’ is implemented in the ‘ddeq.emissions’ module. A more complex NO2 to NOx conversion

will be developed in future to account for non-constant conversion factors.

ddeq provides functions for fitting a seasonal cycle using a cubic C-spline with periodic boundary conditions to a time series

of estimated emissions (‘ddeq.timeseries’). Annual emissions and their uncertainties are obtained by integrating the seasonal

cycle as shown in the following code:515

fit, model, _, _, _ = ddeq.timeseries.fit(

times,

estimates,

estimates_precision

)520

annual, annual_precision = model.integrate(

fit['x'],

fit['x_std']
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)

A detailed example is available as Jupyter Notebook (‘example_annual_emissions.ipynb’).525

Finally, ddeq provides functions for visualizing the remote sensing images, the plume detection, and the results of the

emission quantification using ‘ddeq.vis.plot_{method}_result‘ (e.g., Fig. 5). The library includes several Jupyter Notebooks

with demonstrations for the different methods.

4 Conclusions

There have been many studies quantifying the emissions of hotspots in remote sensing images in the past and we expect530

significantly more studies in the future with the new generation of imaging satellites. The ability to monitor emissions of air

pollutants and greenhouse gases is an important capability of remote sensing instruments. As information on emissions from

hotspots can be politically sensitive, it is essential that the emission estimates are reliable, i.e. that the methodology used can

be verified, for which an open-source library will be an invaluable tool.

ddeq is a community library that is open to new users and developers. The Jupyter notebooks with tutorials and examples535

make it easy for new users to learn how to apply the library to different datasets. ddeq is hosted as an open-source project

on GitLab making it possible for users and developers to submit bug reports and feature request. Finally, developers can

further expand existing methods in ddeq or implement new methods. ddeq makes it possible to compare these additions with

existing methods in a reproducible way, for example by using the same input data, increasing the reliability of estimates of

anthropogenic emissions of air pollutants and greenhouse gases.540

The ddeq library provides a general framework where new methods and options can easily be implemented. It will be further

developed in the future, for example, in the CO2MVS Research on Supplementary Observations (CORSO) project, where ddeq

will be used for quantifying CO and NOx emissions from Sentinel-5P/TROPOMI and other satellite instruments. Furthermore,

ddeq will be used for quantifying CH4 emissions from observations of the new airborne AVIRIS-4 imaging spectrometer

operated by a consortium of Swiss research institutes led by the University of Zurich (Green et al., 2022). Future updates545

will further harmonize the different implementations allowing for more flexibility and even better comparability between the

different methods. It is also planned to provide support for machine-learning models such as the plume segmentation algorithm

developed by Dumont Le Brazidec et al. (2023).

One main goal of the CoCO2 project is the development of prototype systems for anthropogenic emission monitoring. The

ddeq Python library for data-driven emission quantification presents such a prototype for emission monitoring of hotspots550

using lightweight approaches. It was developed and used in the CoCO2 project to benchmark different emission quantification

methods with the aim to identify the most suitable and accurate approaches to be implemented in the prototype of the European

CO2 monitoring system (Hakkarainen et al., 2023; Santaren et al., 2024).
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Code and data availability. The ddeq version 1.0 described in this document is available in the supplement. The code repository is available

on Gitlab.com (https://gitlab.com/empa503/remote-sensing/ddeq). The synthetic satellite observations and wind fields from the SMART-555

CARB dataset are available on Zenodo (https://doi.org/10.5281/zenodo.4048227 and https://zenodo.org/doi/10.5281/zenodo.10684752).

Appendix A: Installation and interactive computing environment

The latest version of the ddeq library can be installed using Python’s package manager pip:

python -m pip install ddeq

The development version of ddeq can be cloned using560

git clone https://gitlab.com/empa503/remote-sensing/ddeq.git

and then installed using pip. For the development version it is useful to install it editable (-e option):

pip install -e ddeq/

The version described in this paper is available in the supplement. The version can be installed using ‘conda‘ and ‘pip‘ with

following steps:565

# create Python environment

conda create -n ddeq-test python=3.9

conda activate ddeq-test

# install additional packages570

conda install jupyterlab

conda install pycurl

# unzip tar.gz file in the supplement and install using pip

tar -xzvf ddeq-1.0.tar.gz575

python -m pip install ddeq-1.0/

# start JupyterLab

jupyter lab --notebook-dir .

The tutorial and examples are included in the ‘notebooks‘ folder.580
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