Preprints
https://doi.org/10.5194/egusphere-2023-2912
https://doi.org/10.5194/egusphere-2023-2912
04 Jan 2024
 | 04 Jan 2024

A novel, balloon-borne UV/visible spectrometer for direct sun measurements of stratospheric bromine

Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz

Abstract. We report on a novel, medium weight (∼ 25 kg) optical spectrometer coupled to an automated sun tracker (∼ 12 kg) for direct sun observations from azimuth controlled balloon platforms. It is designed to measure a suite of UV/vis absorbing gases (O3, NO2, BrO, OClO, HONO and IO) relevant in the context of stratospheric ozone depletion using the DOAS method. Here, we describe the design and major features of the instrument. Further, the instrument’s performance during two stratospheric deployments from Esrange/Kiruna (Sweden) on 21 August 2021 and from Timmins (Ontario, Canada) on 23 August 2022 are discussed along with first results concerning inferred mixing ratios of BrO above balloon float altitude. Using a photochemical correction for the partitioning of stratospheric bromine ([BrO]/[Bry]) obtained by chemical transport simulations, the inferred total stratospheric bromine load [Bry] amounts to (17.5 ± 2.2) ppt (pure statistical error amounts to 1.5 ppt) in (5.5±1.0) yrs old air, resulting in a stratospheric entry early 2017±1 yr, the latter being inferred from simultaneous measurements of N2O by the GLORIA mid-IR instrument.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

29 Jul 2024
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024,https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2912', Anonymous Referee #1, 08 Feb 2024
  • RC2: 'Comment on egusphere-2023-2912', Anonymous Referee #2, 10 Apr 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2912', Anonymous Referee #1, 08 Feb 2024
  • RC2: 'Comment on egusphere-2023-2912', Anonymous Referee #2, 10 Apr 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Karolin Voss on behalf of the Authors (16 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (17 May 2024) by Saulius Nevas
RR by Anonymous Referee #1 (17 May 2024)
RR by Anonymous Referee #2 (30 May 2024)
ED: Publish as is (04 Jun 2024) by Saulius Nevas
AR by Karolin Voss on behalf of the Authors (06 Jun 2024)

Journal article(s) based on this preprint

29 Jul 2024
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024,https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz

Viewed

Total article views: 618 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
458 129 31 618 20 16
  • HTML: 458
  • PDF: 129
  • XML: 31
  • Total: 618
  • BibTeX: 20
  • EndNote: 16
Views and downloads (calculated since 04 Jan 2024)
Cumulative views and downloads (calculated since 04 Jan 2024)

Viewed (geographical distribution)

Total article views: 657 (including HTML, PDF, and XML) Thereof 657 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 29 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV/vis absorbing gases (e.g. O3, NO2, BrO, IO, HONO, ..) is described. Major design features as well as its performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017±1 yr.