Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-2345
https://doi.org/10.5194/egusphere-2023-2345
15 Feb 2024
 | 15 Feb 2024

Bayesian Cloud Top Phase Determination for Meteosat Second Generation

Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt

Abstract. A comprehensive understanding of cloud thermodynamic phase is crucial for assessing the cloud radiative effect and is a prerequisite for remote sensing retrievals of microphysical cloud properties. While previous algorithms mainly distinguished between ice and liquid phases, there is now a growing awareness for the need to further distinguish between warm liquid, supercooled and mixed phase clouds. To address this need, we introduce a novel method named ProPS, which enables cloud detection and determination of cloud top phase using SEVIRI, the geostationary passive imager aboard Meteosat Second Generation. ProPS discriminates between clear sky, optically thin ice (TI), optically thick ice (IC), mixed phase (MP), supercooled liquid (SC), and warm liquid (LQ) clouds. Our method uses a Bayesian approach based on the cloud mask and cloud phase from the lidar-radar cloud product DARDAR. Validation of ProPS using six months of independent DARDAR data shows promising results: The daytime algorithm successfully detects 93 % of clouds and 86 % of clear sky pixels. In addition, for phase determination, ProPS accurately classifies 91 % of IC, 78 % of TI, 52 % of MP, 58 % of SC and 86 % of LQ, providing a significant improvement in accurate cloud top phase discrimination compared to traditional retrieval methods.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Jul 2024
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We introduce ProPS – a new method to detect clouds and their thermodynamic phase using a...
Share