
Bayesian Cloud Top Phase Determination for Meteosat Second
Generation
Johanna Mayer1, Luca Bugliaro1, Bernhard Mayer1,2, Dennis Piontek1, and Christiane Voigt1,3

1Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
2Ludwig Maximilians Universität, Institut für Meteorologie, Munich, Germany
3Johannes Gutenberg-Universität, Mainz, Germany

Correspondence: Johanna Mayer (johanna.mayer@dlr.de)

Abstract. A comprehensive understanding of cloud thermodynamic phase is crucial for assessing the cloud radiative effect and

is a prerequisite for remote sensing retrievals of microphysical cloud properties. While previous algorithms mainly detected

ice and liquid phases, there is now a growing awareness for the need to further distinguish between warm liquid, supercooled

and mixed phase clouds. To address this need, we introduce a novel method named ProPS (PRObabilistic cloud top Phase

retrieval for Seviri), which enables cloud detection and determination of cloud top phase using SEVIRI, the geostationary5

passive imager aboard Meteosat Second Generation. ProPS discriminates between clear sky, optically thin ice (TI), optically

thick ice (IC), mixed phase (MP), supercooled liquid (SC), and warm liquid (LQ) clouds. Our method uses a Bayesian approach

based on the cloud mask and cloud phase from the lidar-radar cloud product DARDAR. Validation of ProPS using six months

of independent DARDAR data shows promising results: The daytime algorithm successfully detects 93% of clouds and 86%

of clear sky pixels. In addition, for phase determination, ProPS accurately classifies 91% of IC, 78% of TI, 52% of MP, 58%10

of SC and 86% of LQ, providing a significant improvement in accurate cloud top phase discrimination compared to traditional

retrieval methods.

1 Introduction

Understanding and correctly identifying clouds and their thermodynamic phase in satellite remote sensing is crucial for sev-

eral reasons. First, the phase critically affects cloud-radiation interactions (Choi et al., 2014; Komurcu et al., 2014; Matus and15

L'Ecuyer, 2017; Forster et al., 2021; Cesana et al., 2022) and numerous studies have demonstrated the influence of the cloud

phase on climate sensitivity in general circulation models (Gregory and Morris, 1996; Doutriaux-Boucher and Quaas, 2004;

Cesana et al., 2012; Tan et al., 2016; Bock et al., 2020). Furthermore, phase transition processes depend on various factors like

temperature, aerosol abundance and type, the Wegener-Bergeron-Findeisen process, vertical velocity, turbulence and are thus

difficult to understand and model (Mioche et al., 2015; Korolev et al., 2017; Coopman et al., 2021; Ricaud et al., 2022). Accu-20

rate observations of cloud occurrence and their thermodynamic phase are therefore essential to improve their representation in

climate models (Atkinson et al., 2013; Cesana et al., 2015; Matus and L'Ecuyer, 2017; Moser et al., 2023; Hahn et al., 2023;

Kirschler et al., 2023). Second, the reliable detection of clouds and the determination of their phase is a critical first step for the

remote sensing retrieval of cloud properties such as optical thickness, effective particle radius and water path. Ice and liquid
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cloud particles have different scattering and absorption properties, and an incorrect phase assignment can lead to significant25

errors in remotely retrieved cloud properties (Marchant et al., 2016).

Passive sensors aboard geostationary satellites play an important role in the observation of clouds and their thermodynamic

phase. The advantages of these sensors are their wide field of regard and their ability to observe the same area at any time of day,

allowing to study the temporal evolution of clouds with high temporal resolution. However, determining the thermodynamic

phase of clouds using passive sensors is a challenging task. In the past, passive sensor phase retrievals often only distinguished30

between ice and liquid clouds (or ice/liquid/unknown) (e.g., Key and Intrieri, 2000; Knap et al., 2002; Baum et al., 2012;

Bessho et al., 2016; Marchant et al., 2016; Platnick et al., 2017; Benas et al., 2017). More recently, retrieval algorithms have

been developed for imagers on geostationary satellites like the Advanced Baseline Imager (ABI) aboard GOES-R and the

Advanced Himawari Imager (AHI) aboard Himawari-8, allowing for a further distinction between mixed-phase, liquid, and, in

the case of ABI, supercooled liquid cloud tops (Pavolonis, 2010; Wang et al., 2019; Li et al., 2022). Nevertheless, accurately35

distinguishing between phases beyond just liquid and ice remains challenging (Korolev et al., 2017). Also, Mayer et al. (2023)

show that mixed-phase and supercooled cloud tops are often present over the Meteosat disc, not only in regions like the

Southern Ocean, and thus deserve dedicated retrieval algorithms.

We have developed a new method for cloud detection and cloud top phase determination for the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) on board the geostationary Meteosat Second Generation (MSG) satellite (Schmetz et al., 2002)40

using a Bayesian approach. Our focus is on the identification of mixed phase and supercooled liquid clouds in addition to the

’traditional’ purely ice and warm liquid cloud tops. We use the Lidar-Radar cloud product DARDAR (liDAR/raDAR, Delanoë

and Hogan, 2010) as the basis for this method. DARDAR is based on the combination of active radar and lidar measurements

from the A-Train satellites CloudSat and CALIPSO and provides a consolidated classification of the measured clouds into

different cloud phases. Synergistic lidar-radar techniques are considered the most reliable for cloud phase determination from45

satellites because the used instruments are complementary due to their different penetration depths and different particle size

sensitivities (Wang, 2012; Delanoë and Hogan, 2008; Zhang et al., 2010; Korolev et al., 2017; Ewald et al., 2021). Over the

years, they have been widely used to study the global horizontal and vertical distribution of cloud occurrence and cloud phase

(Okamoto et al., 2010; Wang, 2012; Mioche et al., 2015; Matus and L'Ecuyer, 2017; Listowski et al., 2019). For our new phase

retrieval method, we use the DARDAR product as ground truth for cloud and phase occurrence which can distinguish between50

warm liquid, supercooled liquid, mixed phase and ice. We collocate five years of these data with SEVIRI measurements in

selected channels and ancillary data to create a large collocated data set with information on the cloud top phase from DAR-

DAR. Our method then uses a probabilistic Bayesian approach as follows: We compute a prior representing the probability of

cloud and phase occurrence as well as probabilities for SEVIRI channel measurements from the collocated data set. We update

the prior using Bayes’ formula with each successive SEVIRI measurement, resulting in a probability for cloud occurrence and55

for its top phase based on the prior information and the selected SEVIRI measurements. The SEVIRI channels used in this

calculation include three infrared channels (centred at 8.7µm, 10.8µm and 12µm), two visible channels (0.6µm and 1.6µm)

and a local texture parameter derived from the 10.8µm channel.
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Bayesian approaches have proven successful in various classification problems using satellite data (Merchant et al., 2005;

Mackie et al., 2010; Heidinger et al., 2012; Pavolonis et al., 2015; Meirink et al., 2022). One advantage of the Bayesian60

approach is its ability to handle complexity and consolidate diverse spectral information from different SEVIRI channels into

a single metric (Pavolonis et al., 2015). Furthermore, it is straightforward to define a quality parameter for the result, since the

outcome of a Bayesian approach is a probability.

To test the performance of our method we validate it using six months of DARDAR data, which were not used for the

computation of probabilities in order to keep the validation independent.65

2 Data set

2.1 DARDAR-MASK

As ground truth for cloud occurrence and cloud thermodynamic phase, this study uses the product DARDAR-MASK, part of the

synergistic active remote sensing product DARDAR, specifically the DARMASK_Simplified_Categorization data set (Delanoë

and Hogan, 2010; Ceccaldi et al., 2013). DARDAR-MASK is derived from the sun-synchronous, low-earth orbit satellites70

CloudSat (Stephens et al., 2002) and CALIPSO (Winker et al., 2003). To distinguish between cloud phases, DARDAR-MASK

uses the wet bulb temperature derived from the ECMWF-AUX dataset (Benedetti, 2005) and the extent of cloud layers as well

as the different sensitivities of lidar and radar to cloud particles of varying sizes: cloud layers containing water have a strong

lidar backscatter and subsequent attenuation; the CloudSat radar is mostly only sensitive to the larger ice crystals (Hogan

et al., 2003). DARDAR-MASK provides vertically resolved cloud thermodynamic phase along the track of the CALIPSO75

and CloudSat satellites with a spatial resolution of 1.1 km along track and 60 m in the vertical direction. For brevity, we use

"DARDAR" instead of DARDAR-MASK to describe the cloud product in the following. An example curtain of DARDAR

can be seen in the background of Fig. 7. We collocate five years (2013–2017) of DARDAR data with observations of the

passive instrument SEVIRI aboard the geostationary satellite Meteosat-9 (part of the Meteosat Second Generation series) by

merging overpasses of the polar orbiting satellites with the corresponding SEVIRI pixel for each time and latitude-longitude80

combination. The collocated DARDAR data are then aggregated to the spatial resolution of the SEVIRI sensor (3×3 km2 at

the sub-satellite point). Details on how this collocation is done can be found in Mayer et al. (2023). From the DARDAR data

we extract two key pieces of information for each SEVIRI pixel: 1) whether a pixel is clear or cloudy, and 2) a cloud top phase.

This cloud top phase at SEVIRI resolution is defined by horizontal and vertical averaging of DARDAR gates using a simplified

penetration depth (Mayer et al., 2023). We distinguish between warm liquid (LQ), supercooled liquid (SC), mixed phase85

(MP) and ice. MP cloud tops in SEVIRI resolution are defined as containing either only gates classified as mixed-phase by

DARDAR or a mixture of liquid, ice and/or mixed-phase DARDAR gates in the cloud top gates considered for the collocation

(see Mayer et al. (2023) for details). To ensure that the averaging over DARDAR gates for a SEVIRI pixel is not done over

two different clouds, the gates are all required to have a similar cloud top height. For multilayered clouds, e.g., a high cirrus

cloud on top of lower clouds, only the uppermost cloud layer is considered. For pure ice clouds we use information on the90

optical thickness contained in DARDAR to distinguish further between optically thin ice (TI) and thick ice (IC), where we use

3



17.5

12.5

15.0

5.0

2.5

0

10.0

7.5

(b) Number of samples in 
sza-umu parameter space

(a) Number of samples
in the SEVIRI disc

2.0

1.0

0.2 0.4
umu

sz
a

20

0

40

60

80

0.6 0.8 1.0

x105x103

4.0

3.0

Figure 1. (a) Number of samples on the SEVIRI disc in latitude-longitude boxes of 2.5◦×2.5◦. (b) Number of samples in sza-umu (solar

zenith angle - cosine of the satellite zenith angle) parameter space.

an optical thickness τ = 2 as threshold. We employ this distinction since TI and IC have different radiative properties and are

typically detected by different channel (combinations) of SEVIRI (see Sect. 4). The optical thickness threshold is consistent

with the cloud type categories of GOES-R (Pavolonis, 2010). To combine both aspects (cloudy/clear and cloud top phase), we

introduce a "cloud state parameter", denoted as q ϵ{clear,TI, IC,MP,SC,LQ}. Note that in the following, when we use the95

terms "cloud state" or "cloud phase" in the context of our retrieval, we are referring to the phase of a cloud only at the cloud

top - as passive imagers such as SEVIRI cannot penetrate deep into a cloud.

2.2 Distribution of samples

Figure 1(a) shows the distribution of samples in the SEVIRI disc in latitude-longitude boxes of 2.5◦×2.5◦. The figure demon-

strates the good coverage of samples over the entire SEVIRI disc.100

The DARDAR data is obtained from polar orbiting satellites that follow a sun synchronous orbit. Consequently, it can only

provide information about clouds during the overflight times. This characteristic of the data has implications for our retrieval

process, particularly for the use of solar channels and their dependence on solar and satellite viewing angles. Figure 1(b)

shows the distribution of samples in the parameter space spanned by the solar zenith angle (sza) and the cosine of the satellite

zenith angle (umu). Notably, there are two regions in this parameter space where no samples are available: one for sza values105

below 20◦, and another for combinations of high umu and sza values. The use of solar channels in the retrieval is handled

differently for these two regions: For sza values below 20◦, the probabilities employed in the retrieval process are obtained

from probabilities for sza values larger than 20◦. For the regions of the parameter space without samples for high sza and

umu combinations, the solar channels are effectively not used. In a Bayesian update, this is done by imposing flat probability

distributions for the solar channels in these regions of the parameter space, i.e. the cloud state probabilities are not changed by110

the solar channels. This is further explained in Sect. 6. In addition, since the DARDAR data do not contain data points at the

sunglint, we also impose flat probability distributions for the solar channels close to the sunglint, defined as sunglint angles

below 20◦.
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There are samples available for all other combinations of umu and sza. However, it is important to note that the data set does

not include all of these possible combinations of angles for every latitude. For instance, at low latitudes, the overflight times115

always occur around noon, resulting in relatively low sza values (between 20° and 40° for latitudes between 0° and 10°N/S).

The statistics for large sza values originate consequently from clouds in higher latitudes. This discrepancy could introduce a

bias when using solar channels depending on angles, as meteorological and microphysical conditions in high latitudes may

differ from those in lower latitudes.

In addition, as CloudSat operated in daylight-only mode, our data set only includes samples collected during the day. This120

could potentially introduce a bias in the nighttime retrieval for clouds whose properties differ between night and day.

2.3 Ancillary data

In addition, we include ancillary data such as surface temperature and surface type in the collocated data set. The surface

temperature data are obtained from the ERA5 reanalysis (Hersbach et al., 2020) and interpolated to the SEVIRI grid. For

surface type classification we have adopted the International Geosphere-Biosphere Programme (IGBP) scheme (Loveland125

and Belward, 1997) provided in the MODIS L3 product MCD12C1 (Friedl et al., 2010). Surface types are grouped into five

categories (water, barren, permanent ice and snow, forest and vegetation excluding forest) and projected onto the SEVIRI

grid (for details see Strandgren et al., 2017). In summary, our collocated data set includes the cloud state parameter q from

DARDAR, SEVIRI observations and ancillary data from ERA5 and IGBP for five years of data. These five years of data

amount to over 40 million data points. The use of all these years should ensure that a reasonable amount of annual variability130

is accounted for.

3 Bayes approach applied to satellite data

The output of our new cloud state retrieval method ProPS (PRObabilistic cloud top Phase retrieval for Seviri) is a probability

for the cloud state given all (useful) SEVIRI measurements (as defined in Sect. 4) and ancillary data. In the following we

explain how this probability is computed with the help of Bayes formula. Figure 2 shows a schematic of the method.135

3.1 Bayes method

First, we use the collocated data set to compute probabilities P (q|A) for the occurrence of each cloud state q conditioning

on a set of ancillary parameters A independent of the satellite observations. These probabilities serve as prior of the cloud

state distribution and are updated for each SEVIRI measurement. The updated probability for the cloud state, P (q|M1,A),

given a SEVIRI measurement M1 (i.e. a brightness temperature (BT), a brightness temperature difference (BTD) or a solar140

observation, see below) and the set of ancillary parameters A already mentioned above is calculated using Bayes formula

P (q|M1,A) =
P (M1|q,A)P (q|A)

P (M1|A)
. (1)
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Figure 2. Scheme of the phase retrieval method ProPS. The green box shows the preparation for the retrieval, i.e. the calculation of the

probabilities from the collocated data set. The blue box shows the phase retrieval steps of ProPS.

The first term in the numerator, P (M1|q,A), is a conditional probability for the SEVIRI measurement M1 and can be de-

rived from the collocated SEVIRI-DARDAR data set (Sect. 2). The denominator P (M1|A) acts as a normalisation factor. It

can be computed by breaking it down for each possible cloud state q, leading to the following decomposition: P (M1|A) =145 ∑
qP (M1|q,A)P (q|A). Note that this is equal to the numerator of Eq. 1 summed over all cloud states q. Hence, all terms

to compute the updated probability P (q|M1,A) can be derived from the collocated data set. We repeat the same step for

subsequent SEVIRI measurements. Updating the probability with a second SEVIRI measurement M2 leads to

P (q|M2,M1,A) =
P (M2|q,M1,A)P (M1|q,A)P (q|A)

P (M2|M1,A)P (M1|A)
, (2)

with Bayes’ formula being applied twice. For a series of n measurements, the probability for the cloud state q given all the150

measurements M := (M1,M2, ...,Mn) and ancillary parameters A can be expressed as

P (q|M,A) =
1

N
P (Mn|q,Mn−1, ...,M1,A)...

P (M2|q,M1,A)P (M1|q,A)P (q|A), (3)

with the normalization factor

N = P (Mn|Mn−1, ...,M1,A)...P (M2|M1,A)P (M1|A). (4)155

Thanks to equation 3 we can compute a probability for the cloud state q that takes into account (i) prior knowledge about q, (ii)

all SEVIRI measurements M and (iii) all ancillary parameters A.
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The data requirements for calculating each probability scale with the number of parameters used as conditions. Fortunately,

the conditional probabilities on the right hand side of Eq. 3 can be simplified by considering the dependencies of the different

SEVIRI channels. For example, if the measurement of one channel, M2, is (approximately) independent of the measurement160

of another channel, M1, then its probability reduces to P (M2|q,M1,A) = P (M2|q,A). Similarly, if a measurement is inde-

pendent of certain auxiliary parameters, these parameters can be removed from the set A in the conditional probability (i.e.

A= {a1,a2,a3, ...}→A= {a1,a3, ...} if M2 is independent of a2). This simplification step is essential to ensure that the

probabilities are meaningful and statistically valid. Given the size of our data set of about 40 million data points, we limit the

number of conditions to a maximum of four per probability to ensure statistical validity. In cases where a SEVIRI measurement165

depends on more than four of the parameters in its conditional probability, we carefully select which of these parameters are

the most significant and focus on these, removing the less significant parameters. The selection of channels and conditions for

each probability is further explained in the following section (Sect. 4).

3.2 Retrieval result

The result of Eq. 3 is a probability for each cloud state q. As the final result of the retrieval method, we choose the most likely170

cloud state, q∗, i.e. the cloud state with the highest probability for each SEVIRI pixel

q∗ =maxq(P (q|M,A)). (5)

Thus, the final result is one cloud state per SEVIRI pixel.

3.3 Measure of certainty

There are several advantages of using (Bayesian) probabilities: First, they allow to incorporate prior knowledge. This is in175

contrast to traditional decision tree models, which typically do not take this valuable information into account. Second, Bayes’

formula provides a standardised approach to integrating information from different channel measurements into a single, ob-

jective metric. It eliminates the need for arbitrary rules when faced with conflicting cloud state indications from different

measurements. Third, the approach maintains transparency; one can clearly understand the origin of the probability values

assigned to each cloud state. Finally, since the outcome is a probability for each cloud state, it is straightforward to develop a180

measure of certainty (a quality measure) associated with the outcome. We define the certainty c as the difference between the

probability for q∗ and the average probability of the remaining other cloud states q′

c= P (q∗ |M,A)− 1

5

∑
q′

P (q′ |M,A). (6)

This certainty is a number between zero and one. It is close to one when the highest probability is much larger than the other

probabilities. The certainty becomes small when the probabilities for other cloud states are close to the highest probability.185
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4 Selection of channels and dependencies

This section describes which SEVIRI channels and conditions are used for each probability. From the collocated data set we

have the following set of ancillary parameters

A= {sza,umu,sfc,skt, lat, lon,season}, (7)

where sza is the solar zenith angle, umu is the cosine of the satellite zenith angle, sfc is the surface type, skt is the surface190

temperature, lat is the latitude, lon is the longitude and season is one of the four seasons of the year (December – January –

February, March – April – May, June – July – August or September – October – November).

To choose the SEVIRI channels and their most important dependencies for the retrieval, we combine physical/theoretical

principles of the physics involved with statistical tools. First, we select channels and channel combinations that are known to

carry information about the cloud state. We also consider only a selection of conditions for the probability of each channel195

(combination) that make sense from a physical perspective. From this selection of physically meaningful conditions, we decide

on the optimal conditions for the probability of each channel (combination) using the statistical tool of mutual information

(Shannon and Weaver, 1949; Cover and Thomas, 2005). The mutual information I(Mi;q) between a channel (combination)

Mi and q is a measure of the information content of Mi with respect to q: The higher the mutual information, the more

information can be gained from Mi in a retrieval of q. We calculate the mutual information I(Mi;q |C) for different sets of200

conditions C to find the set of conditions C∗ which maximizes the mutual information. These optimal sets of conditions are

then used for the respective conditional probabilities, P (Mi |q,C∗). A selection of computed mutual information values for

different SEVIRI channel (combinations) and sets of conditions is displayed in Fig. 3. To gain insights into the contributions of

different channel (combinations) to cloud and phase detection, we additionally calculate the mutual information between each

channel Mi and the cloud classification cloudy/clear, as well as between Mi and the phase classification, under the specified205

conditions C. By comparing the mutual information values for I(Mi;q |C), I(Mi; cloudy/clear, |,C) and I(Mi;phase, |,C),

we can assess the extent to which each channel contributes to the detection of cloudy or clear conditions, as well as to the

determination of cloud phase.

In the following, we briefly describe which conditional probabilities are consequently used for the retrieval. We discuss

the physical connection between each channel (combination) and the cloud state q, and the physical reasons why the chosen210

conditions for the probabilities might enhance their information content.

4.1 Prior

As prior knowledge we use the probability

P (q | lat, lon,season). (8)

This means that the prior is the probability for each cloud state per latitude, longitude and season, calculated from the five years215

of collocated data. Besides latitude, longitude and season, the set of ancillary parameters A introduced above in Sect. 4 also
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Figure 3. First panel: Mutual information I between the latitude and the cloud state q (first row), cloudy/clear, abbreviated as c/c, (second row)

and cloud phases (third row) for different sets of conditions C. This represents the information content of the different priors we considered,

where latitude is a fixed condition, i.e. P (q | lat,C). Other panels: Mutual information I between SEVIRI channel (combinations) and cloud

state q, cloudy/clear and cloud phases for different sets of conditions C. Empty spaces for C mean no condition, i.e. the starting point

of I before conditions are introduced. The different mutual information values for q, cloudy/clear and phase indicate whether a channel

(combination) contributes more to cloud or phase detection. The blue boxes indicate the sets of conditions selected for ProPS.

includes surface type, surface temperature, and solar/satellite zenith angles. However, since latitude and longitude are already

constrained, incorporating surface type or satellite viewing angles as additional constraints becomes unnecessary. Furthermore,
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our mutual information calculations show that conditioning on latitude, longitude and season yields the prior with the optimal

information content compared to other possible sets of conditions (see Fig. 3). This means that location (latitude and longitude)220

and season are the main dependencies.

4.2 Brightness temperature at 10.8µm

As the first SEVIRI measurement we use the BT centred at 10.8µm wavelength, BT10.8, located in the atmospheric window of

the electromagnetic spectrum. At this wavelength, the atmosphere is most transparent compared to all other SEVIRI infrared

channels. Therefore, it is a good approximation for the temperature of the surface and (optically thick) cloud tops - one of225

the most important parameters for cloud detection and phase discrimination. This can also be seen in Fig. 3, as the mutual

information between q and BT10.8 has the highest values compared to all other SEVIRI channel mutual information values.

We use the conditional probability

P (BT10.8 |q,umu,skt). (9)

By conditioning on skt we take into account the temperature difference (contrast) between BT10.8 and the surface temperature.230

This is particularly important for cloud detection. The dependence on umu is particularly relevant for optically thin clouds,

where a higher satellite zenith angle means an effective increase in optical thickness and therefore smaller BT10.8 values.

4.3 Brightness temperature difference between 10.8µm and 8.7µm channels

The BTD between the 10.8µm and 8.7µm window channels is commonly used in phase determination algorithms (Menzel

et al., 2002; Platnick et al., 2003; Zhou et al., 2022). This BTD, denoted as BTD10.8−8.7, provides valuable information about235

cloud phase in several ways. Firstly, it is sensitive to the amount of water vapor present above cloud top. This is because

the 8.7µm channel is more strongly affected by water vapor absorption in the atmosphere compared to the 10.8µm channel.

Thus, the BTD is closely related to the cloud top height and thus to the cloud top temperature, which in turn is related to the

cloud phase. Secondly, the BTD is influenced by the effective radius of cloud particles (Ackerman et al., 1990). This parameter

provides a clue about the phase of the cloud since ice crystals generally have larger effective radii than liquid droplets. Thirdly,240

BTD10.8−8.7 is sensitive to cloud optical thickness (for small optical thicknesses, Ackerman et al., 1990). On the one hand, this

is helpful for the detection of optically thin clouds, on the other hand, this can indirectly indicate the cloud phase since only ice

clouds, such as cirrus clouds, typically show very low optical thicknesses. Note, however, that dissipating clouds or a fractional

cloud cover can also result in low optical thickness in SEVIRI pixels, which could bias the interpretation of these clouds as ice

clouds. Lastly, the BTD also has a direct dependence on cloud phase for optically thin clouds, i.e. when transmission through245

the cloud is significant, since the variation in scattering and absorption properties between the two wavelengths 8.7µm and

10.8µm is different for ice crystals and liquid droplets. We use the conditional probability

P (BTD10.8−8.7 |q,BT10.8,umu,sfc). (10)
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Conditioning on umu takes into account that the satellite zenith angle affects the path length and therefore both the amount of

water vapour above the cloud and the effective cloud optical thickness. We also condition on the surface type, since the typical250

values of BTD10.8−8.7 for clear sky differ between surface types - especially for deserts such as the Sahara or the Arabian

Peninsula due to the low spectral emissivity of desert dust at 8.7µm (Masiello et al., 2014). The relationship with BT10.8 is

obvious, since it is contained in BTD10.8−8.7.

4.4 Brightness temperature difference between 10.8µm and 12.0µm channels

The BTD between the two window channels at wavelengths 10.8µm and 12.0µm is often used in satellite retrievals for255

cloud detection and cloud properties (e.g., Key and Intrieri, 2000; Pavolonis et al., 2005; Krebs et al., 2007; Kox et al., 2014;

Hünerbein et al., 2022). BTD10.8−12.0 is mainly sensitive to optical thickness and effective radius. Both of these quantities

contain information about the cloud phase as mentioned above. Furthermore, BTD10.8−12.0 also depends directly on the phase,

especially for small optical thicknesses, since, as for BTD10.8−8.7, the scattering and absorption properties between the two

wavelengths 12.0µm and 10.8µm vary differently for ice crystals and liquid droplets (Key and Intrieri, 2000). We use the260

conditional probability

P (BTD10.8−12.0 |q,BT10.8,sfc) (11)

Since the main sensitivity is on optical thickness, BTD10.8−12.0 is mainly useful for detecting thin ice clouds. This is particu-

larly useful when combined with BT10.8, as BTD10.8−12.0 can distinguish between warm cloud top temperatures and optically

thin clouds with warm surface temperatures, which may have the same value of BT10.8.265

4.5 Reflectivity of the 1.6µm channel

The reflectivity of solar radiation is generally a good indicator for the presence of a cloud, as clouds are usually brighter (more

reflective) than the surface for clear sky conditions. Further, near-infrared (NIR) reflectivity, like the 1.6µm channel, is a well

established indicator of cloud phase as the reflectivity at 1.6µm, R1.6, is sensitive to the effective radius of cloud particles: The

typically small liquid droplets reflect more radiation at this wavelength than the typically large ice crystals. In addition to its270

sensitivity to the effective radius, R1.6 is also sensitive to the phase itself, since ice absorbs more radiation than water at this

wavelength. We use the conditional probability

P (R1.6 |q,sza,umu,sfc). (12)

Conditioning on the solar and satellite zenith angles, sza and umu, takes into account that reflectivities are angle dependent.

The sensitivity of R1.6 on azimuth angles is comparatively small, we therefore neglect it in order to keep the number of275

conditions small. The surface type, sfc, is a proxy for surface albedo, as different surface types each have typical albedo values.
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4.6 Reflectivity ratio of the 0.6µm and 1.6µm channels

As the next observation, we consider the reflectivity ratio RR1.6/0.6 =
R1.6

R0.6
. The combination of a NIR channel (R1.6) and a

visible channel (R0.6) is often used to retrieve cloud microphysical parameters such as effective radius and optical thickness

(Nakajima and King, 1990). These microphysical parameters contain phase information, so combining NIR and visible chan-280

nels is useful for a phase retrieval (Knap et al., 2002; Marchant et al., 2016). We use the ratio between the two channels to

reduce the dependence on solar and satellite viewing angles as well as on particle number concentration (Chylek et al., 2006).

We use the probability

P (RR1.6/0.6 |q,R1.6,sza,umu). (13)

Apart from the dependence on R1.6, we again consider the solar and satellite zenith angles for the same reasons as for the285

conditional probabilitiy of R1.6.

4.7 Local binary pattern at 10.8µm

Finally, we use the local binary pattern (LBP) of the 10.8µm infrared channel, LBP(BT10.8). The LBP technique is used for

texture analysis. It characterizes the spatial variations of pixel intensities by comparing the central pixel with its surrounding

neighbors within a defined local region. Texture parameters have already been used in Bayesian retrieval methods for cloud290

detection (Merchant et al., 2005). The texture of clouds differs in most cases from the texture of the surface, so that the LBP

can help in the detection of clouds. Further, the texture of cloudy regions can differ for different cloud types, such as small

cumulus clouds with large local variations in reflectivity versus large smooth cirrus clouds with small variations in reflectivity.

Since different cloud types are associated with different cloud phases, the LBP is also a suitable parameter for phase detection.

To compute the LBP, the central pixel is compared with eight surrounding pixels in a defined neighbourhood: if the intensity295

value of a neighbour is greater than or equal to the intensity of the central pixel, a binary 1 is assigned; otherwise, a binary 0

is assigned for each neighbour. The sum of these binary values contains valuable texture information: the maximum sum value

of 8 indicates a uniform image region, while lower values indicate non-uniform regions. For example, a sum of 4 indicates an

even distribution of neighbours with both higher (or equal) and lower intensities compared to the central pixel. A Gaussian

filter is then applied to smooth the results to obtain a continuous value.300

The infrared channel BT10.8 is well suited for calculating a texture as the atmosphere is most transparent at this wavelength

compared to all other SEVIRI infrared channels. The advantage of choosing an infrared channel is that it is also available

during the night. The LBP of BT10.8 is particularly useful for detecting low clouds during the night, which are otherwise

difficult to distinguish from clear sky for infrared channels. We use the conditional probability

P (LBP(BT10.8) |q,sfc,umu). (14)305

The condition on surface type, sfc, takes into account that different surface types have different textures. The condition on umu

takes into account that pixel sizes and therefore the computed texture from LBP vary with umu.
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5 The PRObabilistic cloud top Phase retrieval for Seviri (ProPS)

This section gives an overview of the ProPS retrieval method using the equations and probabilities explained in the last sections

(Sect. 3 and Sect. 4). Figure 2 gives a schematic overview of the retrieval method.310

5.1 Cloud top phase

The output of the Bayesian method is a probability P (q |M,A) for each cloud state q ϵ{clear,TI, IC,MP,SC,LQ}, of which

we use the cloud state with the highest probability, q∗, as the final result.

5.2 Daytime

Using the probabilities for the selection of SEVIRI channels as explained in the previous section, the cloud state retrieval315

equation for ProPS (see Eq. 3) becomes

P (q |M,A) =
1

N
P (LBP(BT10.8) |q,sfc,umu)

P (RR1.6/0.6 |q,R1.6,sza,umu)

P (R1.6 |q,sza,umu,sfc)

P (BTD10.8−12.0 |q,BT10.8,sfc)

P (BTD10.8−8.7 |q,BT10.8,umu,sfc)

P (BT10.8 |q,umu,skt)P (q | lat, lon,season) (15)

with the normalization factor N =N(M,A) defined such that
∑

qP (q |M,A) = 1. M is the set of SEVIRI channel (combi-

nations)320

M = {LBP(BT10.8),RR1.6/0.6,R1.6,BTD10.8−12.0,

BTD10.8−8.7,BT10.8} (16)

and A the set of ancillary parameters (see Eq. 7).

5.3 Nighttime

During the night, only thermal SEVIRI channels are available. For the night version of ProPS we therefore only use probabili-325

ties of the thermal channels from Eq. 15:

P (q |M,A) =
1

N
P (LBP(BT10.8) |q,sfc,umu)

P (BTD10.8−12.0 |q,BT10.8,sfc)

P (BTD10.8−8.7 |q,BT10.8,umu,sfc)

P (BT10.8 |q,umu,skt)P (q | lat, lon,season) (17)
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Figure 4. Construction of a kernel density estimate (continuous line) with a Gaussian kernel (dashed lines) for four sam-

ples of the true probability distribution (vertical red line segments). Figure adapted from Węglarczyk (2018) (CC BY 4.0

https://creativecommons.org/licenses/by/4.0/).

6 Computation of probabilities

We use the method of kernel density estimation (KDE) to compute the probabilities needed for ProPS from the collocated330

data set. KDE is a technique for estimating a probability density function (pdf), which better represents the details of the pdf

compared to traditional histograms (Węglarczyk, 2018). The KDE technique provides a smooth estimate of the pdf without

imposing assumptions about its shape. Further advantages are that, unlike histograms, it includes all sample point locations

and can more convincingly suggest the presence of multiple modes (Węglarczyk, 2018). Consider a variable of interest x with

an unknown probability distribution P (x) and a sample of n observations, x1,x2, ...xn, of that variable. To compute the kernel335

estimate P̂ (x) of the true probability distribution P (x), we assign a kernel function K(xi,x) to each sample data point xi as

follows (Silverman, 1986; Węglarczyk, 2018):

P̂ (x) =
1

n

n∑
i=1

K(xi,x). (18)

The kernel function K(xi,x) is centred at xi and normalised to unity, i.e.
∫ +∞
−∞ K(xi,x)dx= 1. We employ a Gaussian kernel

function, which is commonly used. The kernel transforms the discrete point location represented by xi into a smooth distribu-340

tion centred around xi. Figure 4 illustrates this technique for the one dimensional case. For d > 1 dimensions, both x and xi

become d-dimensional vectors instead of scalars. For example, in our case, to compute the probability P (BT10.8, q,umu,skt),

the variable x is a four-dimensional vector x= (BT10.8, q,umu,skt).

The width of the kernel function determines the amount of smoothing and is represented by a parameter called bandwidth

h. Too small values of h may result in a probability estimate showing insignificant details, while too large values of h may345

smooth out important features (Węglarczyk, 2018). A certain compromise is needed. We choose to use an (effectively) dynamic

bandwidth h, since there are regions of parameter space with many samples that allow small values of h, and other regions
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with few samples that require large h: before computing the kernel estimate P̂ (x), the variable x is transformed, xt = f(x) :=

arctan( 1β (x−α))/γ. As a non-linear transformation, f(x) can reshape the distribution of the data by stretching or compressing

certain regions by fine-tuning the α, β and γ parameters. The parameters of the transformation are chosen for each variable x350

in such a way that the samples of the variable xi are more evenly distributed in the transformed space. The arctan function in

the transformation is particularly useful for this purpose, as it has the ability to condense the edges of parameter space, where

there are typically fewer samples, while expanding the central region. The parameters α and β can be understood as the global

mean and variance of the variable x. Additionally, these transformation parameters are chosen to ensure that all transformed

variables fall within a similar range, typically around −1 to 1, to maintain similar smoothness in the directions of all variables.355

This requires (in some cases) linear scaling with the γ parameter in the transformation function. After the transformation, the

kernel estimate P̂ t(xt) is computed in the transformed space using a constant bandwidth. The variable is finally transformed

back to the original variable space, P̂ t(xt) = P̂ t(f(x)) =: P̂ (x). This approach results in a narrower kernel in regions with

many xi samples and a wider kernel in regions with fewer xi samples. Consequently, our procedure allows for detailed features

in the kernel estimate P̂ (x) where numerous samples are available, while maintaining reasonable smoothness and flatness in360

regions with limited samples. The transformation parameters as well as the bandwidth for each variable are shown in table 1.

In the case of discrete variables such as q, season, or surface type, the KDE method cannot be used directly. Instead, we

divide the variable space into subcategories based on all possible combinations of the discrete variables of the probability

in question. For each subset, we utilize the KDE method to calculate the probability for the continuous variables within

that specific subcategory. Subsequently, we normalize the probabilities to obtain a normalized probability distribution that365

incorporates both discrete and continuous variables.

From the so computed kernel estimate P (x) with x a d-dimensional vector x= (X1,X2, ...Xd) a conditional probability

can be computed using the relationship

P (X1|X2, ...,Xd) =
P (X1,X2, ...,Xd)

P (X2, ...,Xd)

=
P (X1,X2, ...,Xd)∑
X1 P (X1,X2, ...,Xd)

. (19)370

The probabilities are only computed for the locations in parameter space where a sufficient number of samples, xi, are

available. If too few samples are available, the pdf is set to a flat distribution, i.e. it contains no information and does not

change the probability for the cloud state q when multiplied as in the retrieval Eq. 15. Since the collocated data set is quite

large, this is only necessary for a few special cases. Most notably, this is necessary for the solar channel (combination) R0.6

and RR1.6/0.6 for the regions of sza-umu parameter space where no samples are available (see Sect. 2.2 and Fig. 1). There is375

however one important special case for the probabilities of the solar channel (combination) R0.6 and RR1.6/0.6, for which we

proceed differently: DARDAR data are not available for sza values below 20◦(see Sect. 2.2), as the sun-synchronous orbit of the

polar orbiting satellites Calipso/CloudSAT never reaches lower sza values. For these relatively low sza values, the dependence

of the reflectivity on sza is small compared to other dependencies. As a simple solution for this special case, we therefore use

the probabilities calculated for the lowest available sza also for the smaller values of sza.380
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Table 1. Parameters for transforming and computing the kernel density estimate (KDE) for SEVIRI measurements and ancillary parameters

variable transformation parameters bandwidth

BT10.8 α= 270, β = 30, γ = 1 0.04

BTD10.8−8.7 α= 2.3, β = 2, γ = 1.5 0.04

BTD10.8−12 α= 1, β = 3, γ = 1.1 0.04

R1.6 α= 30, β = 40, γ = 1 0.04

RR1.6/0.6 α= 0.7, β = 1.1, γ = 1 0.04

LBP(BT10.8) α= 6, β = 2, γ = 1 0.04

sza α= 45, β = 120, γ = 1 0.04

umu α= 0.58, β = 1.2, γ = 1 0.04

skt α= 290, β = 20, γ = 1 0.04

lat no transformation 2

lon no transformation 2

Using this KDE method, we compute all probability distributions needed for the ProPS algorithm (see Eq. 15). Fig. 5 shows

an example for the probability P (BT10.8 |q,umu,skt), i.e. the probability to measure BT10.8 values, given the cloud state q

(in different colors) and fixed values for the surface temperature, skt, and satellite zenith angle, umu. As expected, for clear

sky the probability peaks at BT10.8 values close to the surface temperature. For LQ, SC, MP and IC clouds, the probability

distribution shifts to increasingly lower BT10.8 values. There are however large overlap regions, which show that the cloud state385

cannot be determined from BT10.8 measurements alone. TI clouds have a relatively flat probability distribution over a wide

range of BT10.8 values, since the radiation from the surface is transmitted to a varying degree. More examples for probability

distributions can be found in the appendix (see Fig. A1).

7 Example application of ProPS

Figure 6 (right) shows the output of the ProPS retrieval for one exemplary SEVIRI scene, on 2022-04-25 at 12:00 UTC. For390

comparison the natural color RGB of the scene is also shown (left). The result of the ProPS retrieval looks sensible: The

retrieval detects (most) clouds which can be seen in the RGB. The distribution of phases on the SEVIRI disc makes physical

sense, with e.g. mainly IC in the Intertropical Convergence Zone (ITCZ), LQ over the subtropical ocean and SC/MP mainly

over the Southern Ocean and Northern high latitudes.
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Figure 5. Example for the probability distribution P (BT10.8 |q,umu,skt) computed using KDE at fixed values for umu and skt.

Figure 6. RGB composite (left) and example application of ProPS (right) for a SEVIRI scene on the 2022-04-25 at 12:00 UTC.

8 Performance evaluation using DARDAR395

In this section we evaluate how well ProPS is able to reproduce the DARDAR cloud detection and phase classification. To this

end we randomly select six months from the five years collocated data set as validation data set (constraining that every season
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is represented), which amounts to about 3.7 million data points. These data points of the validation data set are not used for the

computation of the probabilities (see Sect. 6) to perform an independent validation.

8.1 Comparison to DARDAR example tracks400

We start the performance evaluation with two example curtains from DARDAR to highlight the strengths of the ProPS retrieval

and the challenges posed by, for example, complex cloud scenes or the different viewing geometries of polar orbiting and

geostationary satellites (see Fig. 7). These two examples demonstrate how the retrieval works at different latitudes and meteo-

rological conditions. Both figures show a DARDAR curtain coarsened to SEVIRI resolution and the corresponding results of

the ProPS algorithm in the plots above, i.e. probabilities for the cloud state q and the certainty measure along the track. As an405

overlay on the DARDAR curtain, the figures show the most likely cloud state from ProPS, q∗, and the cloud state retrieved

from DARDAR, qdardar, which is an aggregate of all DARDAR values per SEVIRI pixel over a vertical depth of 240 m from

the cloud top (see Sect. 2.1 and Mayer et al. (2023) for details).

The ProPS and DARDAR cloud states, q∗ and qdardar, match well in most cases. For the high latitude example in Fig. 7(a),

ProPS is able to detect MP and SC clouds even for very low (< 1 km) cloud top heights. Figure 7(b) shows that MP and SC410

clouds are also present in low latitudes close to the equator where convection is the main cloud formation mechanism and

that ProPS is mostly able to detect them. This might be very useful for future studies of the life cycle and phase transitions of

convective clouds (Coopman et al., 2020). The two figures also show some examples of small cirrus clouds as well as some LQ

clouds beneath an aerosol layer. In both cloud situations, clouds are mostly retrieved in an accurate way. In general however,

the detection works best for spatially extended cloud states. The probabilities for the cloud state, P (q), and the corresponding415

certainty measure show that some clouds can be classified "more easily" than others, i.e. when the probability for a particular

state is close to one, corresponding to high values of the certainty parameter. This is the case, for example, for the large IC

clouds and some LQ clouds and clear sky pixels in the example figures.

However, the examples highlight also challenging situations for the retrieval: In the DARDAR curtain SC and MP cloud

tops often appear together in a cloud and alternate on small spatial scales. ProPS is often not able to resolve this small scale420

variability. Another challenge is posed by optically thin ice clouds. When ProPS fails to detect these TI clouds, it often classifies

these pixels either as the cloud state of a cloud below, if the overlying TI cloud is optically very thin so that the radiation from

the cloud below is largely transmitted through the overlying ice cloud, or as MP, if the overlying TI cloud is somewhat thicker

and the radiation signals from a cloud below containing liquid particles mix with the overlying TI cloud signal. This effect often

happens at the edges of large ice clouds, which are typically optically very thin and/or do not fill an entire SEVIRI pixel. An425

example can be seen in Fig. 7(a) at the edges of the large ice cloud on the right. To overcome this shortcoming, a combination

of ProPS with a cloud product that identifies multilayered clouds would make sense in the future (as is for instance planned

for the EarthCARE multi-spectral imager Hünerbein et al., 2022). Another challenge, again related to optically thin clouds, is

the misclassification of MP, SC or LQ clouds as TI when they are optically thin, e.g. during formation or dissipation. These

optically thin clouds are typically characterised by high values of BTD10.8−12. Since the vast majority of pixels with high430
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Figure 7. Example application of ProPS to DARDAR tracks in (a) high latitudes and (b) low latitudes. The bottom panel of each sub-figure

shows the DARDAR curtain coarsened to SEVIRI resolution; the corresponding results of the ProPS algorithm (probabilities P (q)) are

shown in the panels above. The cloud state retrieved from DARDAR, qdardar, and the most likely cloud state from ProPS, q∗, along the track

are shown in between (in the same colour code as P (q)). Above the P (q) panels, the corresponding certainty of the ProPS results are shown,

with the color code indicating whether q∗ agrees with qdardar. The box plots on the right show the quartiles of the certainty measure for

disagreement (q∗ ̸= qdardar; red) and agreement (q∗ = qdardar; blue).
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BTD10.8−12 values correspond to TI clouds, ProPS, being a statistical method, tends to label pixels with high BTD10.8−12

values as TI clouds.

Sometimes, the ProPS q∗ is spatially slightly shifted against the DARDAR results, especially in the high latitude example

in Fig. 7(a) where q∗ is in some cases slightly shifted to the left relative to qdardar. This is most likely due to the different

viewing geometries of the two instruments. Further, as SEVIRI looks at the clouds under a given angle, a high cloud can cover435

a neighbouring lower cloud from SEVIRI’s perspective. In addition, the cloud cover in the rest of the SEVIRI 2D pixel can be

different from that in the overflight swath of the polar orbiting satellite, and there can be a time difference of up to 7.5 minutes

between the satellites. These effects could explain some of the differences between the ProPS and DARDAR classifications,

especially for high certainty pixels where we expect the classification to be correct. However, these effects are difficult to

account for in a quantitative evaluation (see Sect. 8.2) and lead to lower probabilities of detection.440

The example figures also demonstrate that the cloud situation is often complex, with multi-layered clouds at different alti-

tudes, cloud phase changes on small scales, and other atmospheric factors such as aerosols. The certainty parameter can be an

indicator of the complexity of the scene: Complicated cloud scenes, such as multi-layered clouds or rapidly changing phases on

small scales, tend to have lower certainty values compared to simpler scenarios. For example, the certainty drops from almost

one to lower values in Fig. 7(a) to the left and right of the thick ice cloud, where it becomes thinner with underlying liquid445

layers.

To get an impression how ProPS compares to other cloud and phase retrieval algorithms, we additionally conducted a com-

parison of ProPS with the most recent version of the CM SAF CLoud property dAtAset using SEVIRI - Edition 3 (CLAAS-3)

for 12 exemplary scenes. CLAAS-3 distinguishes between clear sky, warm liquid, supercooled liquid and ice clouds. We find a

good general agreement between the two methods with differences mainly constrained to cloud edges and the transition regions450

between different phases. In general, ProPS classifies more pixels as cloudy than CLAAS-3, especially small, warm cumulus

clouds and categorizes more pixels as thin ice than CLAAS-3. A detailed discussion can be found in the appendix (see Fig. B1

and Fig. B2).

8.2 POD and FAR

In the following, we only consider pixels with a homogeneous cloud state over at least three consecutive pixels along the455

DARDAR curtain. It is difficult for SEVIRI to resolve the cloud state on smaller scales, as mentioned in the section above.

Furthermore, isolated cloud state pixels may be artefacts of the DARDAR product, which we try to exclude.

Fig. 8 shows the overall performance of ProPS evaluated pixel by pixel against the DARDAR cloud state for the six months

of validation data. We distinguish between cloud and phase detection. Fig. 8(a,c) show the number of clear and cloudy pixels

according to DARDAR and colour coded how many of these pixels are identified as clear or cloudy by ProPS. The upper row460

shows this validation for the daytime version, the lower row for the nighttime version of ProPS. The probability of detection

(POD) of clouds (clear sky) is defined as the percentage of pixels classified as cloudy (clear) by both ProPS and DARDAR

relative to the pixels classified as cloudy (clear) by DARDAR. With this definition, the POD for clear sky is 86%, for clouds it

is 93%. Optically thin TI clouds and small warm LQ clouds are the clouds which are most difficult to detect: of all undetected
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Figure 8. Cloud and phase detection for the day version (upper row) and the night version (lower row) of the ProPS method. For IC and TI,

we count both ice classifications as correct in the POD values.

clouds (i.e. the red part of the "DARDAR Cloudy" bar in Fig. 8(a)), 54% are TI clouds and 37% are LQ clouds. Difficulties465

to detect TI clouds are expected since passive sensors are less sensitive to optically thin clouds than Lidar instruments. LQ

clouds are particularly difficult to detect when they occur over bright surfaces or are embedded in (thick) aerosol layers. Small

LQ clouds that do not fully cover SEVIRI pixels and therefore go undetected also play a role. For the same reasons, TI and

LQ are again the two most problematic cloud phases when looking at false alarms: Of all false alarms (i.e. the red part of the

"DARDAR Clear" bar in Fig. 8(a)), 40% are classified by ProPS as TI and 43% as LQ clouds. Looking at these results the470

other way around, this also implies that one can be very sure that there really is a cloud at pixels classified as SC, MP or IC by

ProPS during the day and that pixels classified as clear by ProPS are almost never SC, MP or IC clouds.

As expected, the nighttime version of ProPS performs slightly worse than the daytime version, with a POD of 76% for clear

sky and 95% for clouds. The nighttime version tends to classify too many pixels as cloudy (red part of the "DARDAR Clear"
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bar in Fig. 8(c)). This is particularly the case for LQ clouds, which have similar temperatures as the surface and are therefore475

difficult to detect using thermal channels alone.

Fig. 8(b) and (d) show the phase detection performance of ProPS for the pixels that are correctly classified as cloudy by

the daytime and nighttime version of ProPS respectively. The POD is defined analogously as for cloud detection. For the

daytime version, the POD for IC, TI, MP, SC and LQ is 91%, 78%, 52%, 58% and 86% respectively. For the calculation

of these POD values, for IC (TI) clouds, the other ice classification, TI (IC), was also counted as correctly classified, since480

it is the same thermodynamic phase. The POD values show that the majority of pixels is correctly classified by ProPS. The

phase classification works especially well for IC and LQ clouds. The TI clouds which are not correctly classified by ProPS are

mainly optically very thin TI clouds with other clouds below. As explained in Sect. 8.1 these pixels are often classified either

as MP or as the cloud phase of the cloud below. Fig. 8(b) shows that it is difficult to distinguish between MP and SC, with

many MPs being classified as SC and vice versa. This difficulty is expected since SC and MP cloud tops occur in very similar485

circumstances (similar latitudes, cloud top temperatures and cloud types) and alternate on relatively small scales (see Fig. 7).

In addition, an MP cloud top may consist mainly of liquid droplets and therefore have very similar radiative properties to an

SC cloud top. Unfortunately, there is no parameter quantifying the liquid fraction of MP pixels in DARDAR, so we have no

way of checking the performance of ProPS MP detection as a function of liquid fraction. Nevertheless, results show the ability

of ProPS to identify also the most challenging phases MP and SC (more than half of the DARDAR MP and SC pixels are490

correctly classified by ProPS, see numbers above).

Interestingly, the nighttime phase classification performs remarkably well, almost on par with the daytime version. To un-

derstand why this is the case we studied examples in the SEVIRI disc and compared the phase classification using only thermal

channels against using only solar channels for the retrieval. We find that there are "easier", unambiguous cloud phase cases, for

which the classification using only thermal or only solar is in both cases correct and hence in these situations the combination495

of thermal and solar channels does not lead to different results. For the more complex cases, the classification is challenging

for both thermal and solar channels and the combination of solar and thermal information does not lead to a significant in-

crease of correctly detected phases. However, the certainty of the retrieval increases considerably when all channels are used.

Since solar channels contain valuable information on the phase, as outlined in Sect. 4, the increase in certainty when using

all channels shows that the solar channels indeed enhance the accuracy of phase determination while boosting the confidence500

of the obtained results. It has also been shown in previous studies that the use of solar channels increases accuracy in phase

detection (Baum et al., 2000). Note that the similar performance of the two algorithm versions is only true if we consider the

cases where a cloud has been correctly (according to DARDAR) detected. For cloud detection, thermal and solar channels

have complementary advantages: Solar channels are very helpful at detecting low clouds, which have similar temperatures as

the surface, while thermal channels have advantages for detecting optically very thin clouds. Therefore, the combination of505

the selected thermal and solar channels is the best option for a reliable cloud and phase detection, but the similarity of the

performance of ProPS during daytime and nighttime allows for a smooth transition from day to night.

Recall that the output of ProPS contains not only the most likely cloud state, q∗, but also the probabilities for all cloud states.

In cases where q∗ does not match DARDAR, the second most likely cloud state often does. This is especially true for MP and
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SC clouds: When q∗ does not match the DARDAR classification of MP (SC), 68% (65%) of these pixels have MP (SC) as their510

second most likely cloud phase. Hence, if both the most and second most likely cloud states are considered correct, the POD

increases to 84% for both MP and SC. This means that we can gain information from the second most likely cloud state result.

8.3 Relation to the certainty parameter

One of the advantages of the Bayesian approach is the certainty parameter for the retrieval (see Sect. 3.3). For the example

curtains in Fig. 7, the mean certainty values are shown on the right for pixels where ProPS and DARDAR agree or disagree.515

Where ProPS and DARDAR agree, the average certainty is higher, indicating that the certainty measure is meaningful. How-

ever, as the examples in Fig. 7 show, this is only true on average - there are still cases with a low level of certainty that are

correctly identified, and vice versa.

Figure 9 gives an overview of the relation to the certainty parameter for the six months of validation data for the ProPS day

version. It shows the POD and false alarm rate (FAR) for cloud detection and phase determination (given a detected cloud)520

for each phase separately and their average (weighted by the counts of each phase) per certainty bin of width 0.1. The two

lower panels show the number of occurrences of the certainty values. The average POD for cloud detection is high (> 90 %)

for almost all certainty values; the FAR decreases monotonically with increasing certainty. This means that ProPS tends to

overestimate cloud amount at low certainty values, as also mentioned in Sect. 8.2, but has an increased detection accuracy at

higher certainty values. For phase determination, the average POD increases monotonically with the certainty parameter, while525

the average FAR decreases. Hence, the certainty parameter is a useful tool to decide whether to trust a result.

From the number of occurrences of certainty values (lower panels in Fig. 9) and examples as in Fig. 7 we see that the most

unambiguous cases are clear sky, IC and LQ clouds (if their spatial extent is large enough to fill whole SEVIRI pixels). MP,

SC and TI clouds have on average lower certainty values than the other cloud states.

8.4 Performance on the SEVIRI disc530

To better characterize the performance of ProPS, we evaluate its POD on the SEVIRI disc for the six months of validation data.

This evaluation is shown in Fig. 10 and Fig. 11 for the cloud detection and phase detection given a detected cloud respectively.

Here we show the results for the daytime version; the results for the nighttime version can be found in the appendix (see Fig. C1

and Fig. C2). The top panels show the POD of each cloud state and the lower panels show the corresponding distribution of

the number of occurrences of each cloud state according to DARDAR.535

Fig. 10 shows that cloud detection is most challenging over deserts, such as in northern and southern Africa. Clear sky

detection is most challenging at the ITCZ and some regions in high latitudes. Looking at the distribution of occurrences, it can

be seen that the regions where cloud and clear sky detection are most challenging correspond to the regions with the fewest

occurrences of each.

The same is mostly true for phase detection of TI, MP, SC and LQ (see Fig. 11). For instance, MP and SC have their highest540

detection rates in high latitudes where they occur most often. The detection of IC clouds on the other hand is uniformly high

over the whole SEVIRI disc.
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Figure 9. Top row: POD of cloud and phase detection (given that a cloud was detected) for each phase separately (in colour) and their

weighted average (in black) as a function of the certainty parameter. Middle row: FAR for cloud and phase detection. Lower row left:

Number of occurrences of certainty values. Lower row right: Number of occurrences of certainty values given a cloud was detected (in

black) and the contributions from each phase (as classified by DARDAR; in colour).

For the night version of ProPS, the POD of clouds is similar to the day version while the POD of clear sky is slightly lower

almost everywhere in the SEVIRI disc (see Fig. C1). This suggests that ProPS tends to overestimate cloudiness during the

night. The spatial distribution of the POD of the different phases is very similar to the daytime version (see Fig. C2).545
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Figure 10. POD (upper row) and counts of occurrences (lower row) of cloudy and clear sky pixels in the SEVIRI disc for the ProPS day

version. POD and counts are computed in latitude-longitude bins of 2.5◦× 2.5◦for the six months of validation data.
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Figure 11. POD (upper row) and counts of occurrences (lower row) of the different phases in the SEVIRI disc for the ProPS day version.

POD and counts are computed in latitude-longitude bins of 2.5◦× 2.5◦for the six months of validation data.
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9 Conclusions

This study presents ProPS, a new method for cloud detection and phase determination using SEVIRI aboard the geostationary

satellite Meteosat Second Generation. ProPS distinguishes between clear sky, optically thin ice (TI), optically thick ice (IC),

mixed phase (MP), supercooled liquid (SC) and warm liquid (LQ) clouds. The Lidar-Radar cloud product DARDAR is used

as a reference and a Bayesian approach is applied to combine the cloud and phase information from different SEVIRI channels550

and prior knowledge. For the probabilities used in the Bayesian approach, we carefully select SEVIRI channels and their

dependencies that are used as conditions in the probabilities in order to optimise the information content of the SEVIRI

channels. We implement both a day and a night version of the algorithm, with combinations of SEVIRI channels at wavelengths

0.6,1.6,8.7,10.8 and 12µm, along with a texture parameter derived from the 10.8µm channel. The result of this Bayesian

approach is a probability for each cloud state (clear sky and the various cloud phases) per SEVIRI pixel. This allows us555

to select the most likely cloud state as the final result. ProPS effectively transfers the advanced cloud and phase detection

capabilities of DARDAR to the SEVIRI geostationary imager.

We validate the method using six months of independent collocated DARDAR data. Our findings show that the daytime

algorithm successfully detects 93% of clouds and 86% of clear sky pixels. It also shows good performance in accurately

classifying cloud phases compared to DARDAR data, with probability of detection (POD) values of 91%, 78%, 52%, 58% and560

86% for IC, TI, MP, SC and LQ respectively. Distinguishing between MP and SC poses the greatest challenge in the phase

classification, as there is a tendency for MPs to be classified as SC and vice versa. This is expected as SC and MP cloud tops

occur in very similar circumstances (e.g. similar latitudes and cloud top temperatures) and can have similar radiative properties

if an MP cloud top consists predominantly of liquid droplets. However, it should be emphasized that ProPS is capable of

distinguishing between them in more than 50% of the cases. The primary challenge for the night version lies in detecting low565

LQ clouds, particularly when their temperatures are similar to the surface temperature; the night version of ProPS tends to

overestimate the occurrence of these LQ clouds. However, the night version of ProPS performs nearly as well as the daytime

version in terms of cloud phase detection. This indicates that ProPS is suitable for studying the complete daily cycle of cloud

phases. Nevertheless, the algorithm is expected to perform best for each location during the times of the day corresponding

to the overflight periods where the sza and umu values as well as their combinations (during daytime) are covered by the570

DARDAR dataset. Similarly, the prior information used in the retrieval process is only representative for the specific overflight

times.

An advantage of the ProPS method is its ability to assign a certainty to the results: In the validation, we observe that the POD

of phase detection consistently increases with certainty, providing a straightforward measure of the reliability of the results.

Thus, ProPS represents a significant advancement in discriminating cloud top phases compared to traditional retrieval meth-575

ods. This distinction is crucial for studying ice in the atmosphere, understanding mixed-phase cloud properties and investi-

gating the cloud radiative forcing associated with phase transitions. The new method enables the study of microphysical and

macrophysical cloud properties of clouds with different phases, in particular MP and SC clouds, which have so far been little

investigated from geostationary satellites. The geostationary perspective allows the analysis of the temporal evolution of clouds

26



with different phases as well as phase transitions. SEVIRI, which has been in operation for almost two decades (2004-2023),580

provides an extensive data set that can be used effectively in conjunction with this method to make valuable statistical compar-

isons with climate models. Furthermore, ProPS has the advantage of providing probabilities for each cloud state. This could

be a valuable additional parameter for comparison with climate models. In terms of further development of the ProPS method,

the algorithm can be extended to other satellites with few modifications using for instance spectral band adjustment factors, as

proposed by Piontek et al. (2023), since similar channels as used for ProPS are available in most current operational polar and585

geostationary satellite passive imagers. The Flexible Combined Imager (FCI) aboard the follow-on satellite of MSG (Meteosat

Third Generation – MTG, launched on 13 December 2022 (Durand et al., 2015)) has additional channels in the near infrared

available, which contain information on the cloud phase (e.g. the 2.2µm or 3.8µm channel). However, in order to incorporate

and use channels not available to SEVIRI that contain phase information, one first needs to collect a data set of collocated ac-

tive observations to compute the necessary probabilities. In the future, this could be done with the EarthCARE satellite (Wehr590

et al., 2023) (planned launch May 2024). Furthermore, working with a Bayesian approach offers an additional advantage: The

method can be easily adapted to incorporate input from numerical weather prediction (NWP) models as prior probabilities

(as suggested by Mackie et al. (2010)). This modification would allow the use of NWP model-derived probabilities for cloud

presence and their respective phases as part of the method’s framework. This integration promises to improve the accuracy and

reliability of the ProPS method in future applications.595

Code and data availability. MSG/SEVIRI data are available from the EUMETSAT (European Organisation for the Exploitation of Mete-

orological Satellites) data center. The auxiliary data are available at ECMWF (European Center for Medium-Range Weather Forecasts).

DARDAR data are available from the ICARE Data and Services Center at https://www.icare.univ-lille.fr/ (accessed on 12 January 2023).

The collocated data set, computed probabilities and the ProPS algorithm presented in this study are available on request from the correspond-

ing author.600

Appendix A: Examples for probabilities

To provide readers with a visual understanding of the Bayesian probabilities computed using the Kernel Density Estimation

(KDE) method, we present additional examples in Fig. A1. The figure showcases the probabilities for specific channel combi-

nations, namely BTD10.8−8.7, BTD10.8−12, R1.6, and RR1.6/0.6, given the cloud state q (in different colors). The values for

the additional conditions are displayed in the figure for each channel (combination).605

Appendix B: Comparison of ProPS and CLAAS-3

In order to better characterize ProPS, we conduct a comparison to the CM SAF CLoud property dAtAset using SEVIRI -

Edition 3 (CLAAS-3) product, which was released in 2022 (Meirink et al., 2022). This new edition of the CLAAS product
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Figure A1. Examples for probabilities for different channel (combinations) computed using KDE.

offers an extended phase classification system, distinguishing between clear sky, liquid, supercooled, and various ice cloud

types, which we condensed into one ice cloud category for simplification.610

The method of the CLAAS-3 cloud detection, called CMA-prob, is shows some similarities to ProPS, especially because

it uses a Bayesian approach based on the CALIPSO/CALIOP (but not on CloudSat/CPR) cloud mask as ground truth and a

selection of visible and infrared SEVIRI channels as inputs (Karlsson et al., 2017). While this probabilistic methodology is

similar for ProPS and CMA-prob, their tactics differ slightly: CMA-prob does not use conditions (except for surface types)

for the probabilities but instead subtracts pre-calculated image feature thresholds from each channel (combination). These615

thresholds are dynamic, depending for instance on satellite geometry and atmospheric conditions. In contrast to ProPS, CMA-

prob assumes independence of the different SEVIRI channel (combinations). Another deviation from ProPS is that CMA-prob

excludes thin ice clouds with optical thickness smaller than 0.2 to prevent overfitting. For the pixels classified as cloudy by

their initial procedure CMA-prob, CLAAS-3 employs a (separated) cloud-top phase determination. It relies on a series of

threshold tests utilizing SEVIRI channels at wavelengths of 3.8, 6.3, 8.7, 10.8, 12.0 and 13.4 µm as well as clear- and cloudy-620

sky simulated IR radiances and brightness temperatures. Additionally, consistency with the cloud optical thickness and particle

effective radius retrieval from solar and NIR channel combinations is demanded (Meirink et al., 2022).

To compare ProPS and CLAAS-3, we use 12 SEVIRI scenes sampled at different seasons and different times of day. Fig-

ure B1 shows one such scene. The circumstances in which ProPS and CLAAS-3 differ in the figure are similar for the other

scenes used in the comparison. Figure B2 is a statistic over all 12 scenes, comparing the classification of CLAAS-3 and ProPS.625

Overall, the figures show that there is a good general agreement between the two methods. In Fig. B1, the positions and phases

of the clouds generally agree well when looking at the "big picture". However, there are differences in the details. For cloud
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Figure B1. Comparison of ProPS with the CM SAF CLoud property dAtAset using SEVIRI - Edition 3 (CLAAS-3) for one exemplary

SEVIRI scene. The upper row shows the results of both methods. The lower row shows the comparison of the ProPS and CLAAS-3 results.

detection, discrepancies between ProPS and CLAAS-3 could stem on the one hand from differences in the “training” datasets

(ProPS employing DARDAR, while CLAAS-3 utilizes data from CALIPSO). On the other hand, there are some differences

in the selection of SEVIRI channels and the conditions/thresholds employed, as well as the implementation of the Bayesian630

approach. These nuances likely contribute to the observed differences in cloud and phase detection.

We find that ProPS classifies more pixels as cloudy than CLAAS-3: For the 12 scenes, ProPS classified 62% of all pixels

as cloudy, while CLAAS-3 classified 57% as cloudy. The differences between ProPS and CLAAS-3 are often found at the

cloud edges, especially for small scale warm cumulus and thin cirrus clouds, both in general difficult cloud types to detect (e.g.

in Fig. B1 the pink areas in the Tropics and the cumulus deck West of Africa). The agreement is better during the day than635

during the night, as expected. Especially low, warm clouds are difficult to distinguish from the surface using IR channels alone,
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Figure B2. Statistic of the comparison of ProPS with CLAAS-3 over 12 SEVIRI scenes sampled at different seasons and different times of

day.

leading to the larger discrepancies between ProPS and CLAAS-3 during the night compared to the day: During the day, ProPS

and CLAAS-3 agree on the classification of 81% of all pixels; during the night they agree on 78% of all pixels. For thin ice

clouds, the difference between the two methods might come (partly) from the exclusion of clouds with OT smaller than 0.2 in

CLAAS-3. In general, ProPS tends to overestimate rather than underestimate the amount of cloud (as discussed in Section 6),640

i.e. it is a clear sky conservative algorithm, whereas CLAAS-3 seems to be a cloud conservative algorithm. Exceptions are high

satellite zenith angles (> 70°) and bright surfaces (deserts, ice, snow), where CLAAS-3 has higher cloudiness values compared

to ProPS.

Next, we take a look at the phase categorization of both methods. ProPS has an additional phase category, namely MP,

which has no direct correspondence in CLAAS-3. We find that clouds classified as MP by ProPS are mostly categorized as645

supercooled by CLAAS-3; almost no ProPS MP clouds are classified as ice by CLAAS-3. The CLAAS-3 supercooled clouds

are also the largest contribution to the ProPS SC category. The main differences in phase detection (as the cloud detection)

are found at cloud edges or at the transition regions between different phases (in Fig. B1 for instance at the transition between

supercooled and warm liquid clouds over the Southern Ocean). The phase category of ProPS which differs the most from

CLAAS-3 are thin ice clouds (see TI bar in Fig. B2): ProPS categorizes more pixels as thin ice than CLAAS-3. In most cases,650

ProPS and CLAAS-3 agree on the existence and position of thin ice clouds, however they often have a larger extent in ProPS

(see the yellow regions in Fig. B1 at ice cloud edges). These differences might be due to the mentioned exclusion of clouds with

OT smaller than 0.2 in CLAAS-3. The high sensitivity of ProPS to thin ice might however also lead to false alarms. CLAAS-3
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Figure C1. As Fig. 10, but for the ProPS nighttime version.

categorises parts of the SC and MP categories of ProPS as warm liquid (green parts of MP and SC bars in Fig. B2), suggesting

a tendency towards warmer cloud types in the CLAAS-3 classification scheme compared to ProPS.655

Appendix C: ProPS night version performance on the SEVIRI disc

In Fig. C1 and Fig. C2 we show the POD of the night version of ProPS on the SEVIRI disc for the six months of validation data,

for cloud detection and phase detection (given a detected cloud) respectively. The upper panels show the POD of each cloud

state and the lower panels show the corresponding distribution of the number of occurrences of each cloud state according to

DARDAR. The figures show that the POD of clear sky is worse in the night time version almost everywhere in the SEVIRI660

disc except for the desert regions on the African continent. The POD of clouds on the other hand is similar to the day time

version, suggesting that ProPS has a tendency to overestimate cloudiness during the night. The distribution of the POD of the

different phases is very similar to the daytime version.
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Figure C2. As Fig. 11, but for the ProPS nighttime version
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Węglarczyk, S.: Kernel density estimation and its application, ITM Web of Conferences, 23, 00 037,

https://doi.org/10.1051/itmconf/20182300037, 2018.

Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M., Tanaka, T.,

Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D.: The EarthCARE mission – science and system overview, Atmospheric Measurement850

Techniques, 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, 2023.

Winker, D. M., Pelon, J. R., and McCormick, M. P.: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,

in: Lidar Remote Sensing for Industry and Environment Monitoring III, edited by Singh, U. N., Itabe, T., and Liu, Z., SPIE,

https://doi.org/10.1117/12.466539, 2003.

Zhang, D., Wang, Z., and Liu, D.: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from855

CALIPSO and CloudSat measurements, Journal of Geophysical Research, 115, https://doi.org/10.1029/2009JD012143, 2010.

Zhou, G., Wang, J., Yin, Y., Hu, X., Letu, H., Sohn, B.-J., Yung, Y. L., and Liu, C.: Detecting Supercooled Water Clouds Using Passive

Radiometer Measurements, Geophysical Research Letters, 49, https://doi.org/10.1029/2021GL096111, 2022.

37

https://doi.org/10.1109/TGRS.2002.808301
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.5194/acp-2022-433
https://doi.org/10.1175/1520-0477(2002)083%3C0977:AITMSG%3E2.3.CO;2
https://doi.org/10.1175/BAMS-83-12-1771
https://doi.org/10.5194/amt-10-4317-2017
https://doi.org/10.1126/science.aad5300
https://doi.org/10.1029/2018JD029784
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.5194/amt-16-3581-2023
https://doi.org/10.1117/12.466539
https://doi.org/10.1029/2009JD012143
https://doi.org/10.1029/2021GL096111

